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1. Description  
 

Main outcome of the DCoMEX-BIO application is the development of an Ai-assisted Multiphysics simulation-

driven optimization framework for identifying optimal treatment strategies and protocols of immunotherapy to improve 

its performance outcomes, under uncertainty. Specifically, in the application under study, the focus is on finding the 

optimal time sequence of anti-PDL1 antibody injections, in a simulation driven approach that considers experimental 

data. Regarding the tumor microenvironment modeling, a continuum mechanics model is used that models the 

tumor/host tissue system according to the biphasic theory of soft tissues. A hyperelastic model, (a neo Hookean 

material) is considered for the solid skeleton and the porous flow of the interstitial fluid is described by Darcy’s law and 

a continuity equation accounting for the fluid flux entering from the blood vessels minus the fluid flux exiting through 

lymphatic vessels. The tumor growth is dependent on the concentration of cancer cells, that proliferate due to oxygen 

concentration, and are killed by innate cells, immature antigen presenting cell and effector CD8+ T-Cells and interact 

with the antibodies that may be injected in the tissue. The concentration of these agents is model by advection-

diffusion-reaction equations that are solved in a coupled manner with the porous-hyperelastic-growth model (PHG 

model). The time evolution of the growth coefficient of the tumor region is described by ODEs that are solved point 

wise at each integration point of the porous medium at the tumor region. The total system of equations to be solved is 

comprised of 11 pdes and 1 point-wise distributed in space ODE. 

The purely physics-based model was implemented in MSolve. The MGroup.DrugDeliveryModel application 

builds upon the MSolve finite element library that was further extended to support it. The original model of 5 equations 

described in the DCoMEX-BIO prototype report (D7.2) was refined to account for an arbitrary system of equations to 

model the immune system agents, solved in a fully coupled manner with the PHG model. It is again validated against 

widely used commercial software for benchmark problems like the common application setup of anti-PDL1 

immunotherapy. 

To capture the complex response of the immune system, and multi-agent reactions that take place, and to assist 

the convergence of the solution algorithm a very fine temporal (Generalized-a algorithm) and spatial discretization is 

necessary.  To overcome the immense computational cost associated with the Bayesian update of such a model, 

efficient neural network-based surrogates are developed by use of the AI-Solve library, that allow for the calculation of 

the time evolution of the total volume of the tumor region, that is considered as an indicator of the efficiency of the 

immunotherapy treatment, in terms of parameters of the model that are defined stochastically because of the 

uncertainty in determining their value. Upon executing the Bayesian update of those parameters, the inferred model is 

once again used to create another surrogate model that captures the effect of the different time sequence strategies 

of the immunotherapy injections. The latter is used in a stochastic optimization framework. 

This document is structured as follows: Section 2 describes the mathematical model of the Tumor 

microenvironment, that was implemented in MSolve, that accounts for the interaction of agents of the Immune system 

and includes the immunotherapy.  



DCoMEX Deliverable 7.3. 
 Plan 

  

5 
 

Section 3 presents the technical improvements, i.e. object-oriented based design, made upon the 

original DCoMEX-BIO prototype codebase and the description of the specialized version of the software to account for 

specific immune system agents and their corresponding equations.  Section 4 presents the benchmarks used during the 

validation process of the specialized version, including extended comparisons of the results of the two software 

modules.  

Section 4 contains a description of the experimental data to be used in the update of the computational model.  

Section 5 describes the surrogate models that were created in each stage of the development of the model. Section 6 

is devoted to the illustration of the Bayesian inference procedure for the update of the tumor growth model parameters 

based on experimental data. The stochastic definition of the chosen parameters is presented, and the finalized posterior 

distributions of the model parameters are provided as well.  

Finally, Section 7 presents a stochastic optimization framework for the design of an optimal aPDL1 optimization 

framework where the time-sequence protocol of the injections is considered as an optimization variable. 
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2.  Description of the tumor microenvironment 
mathematical model 
 

 
Figure 1:Immune cell vs cancer cell interactions 

Cancer cell proliferation  

The mathematical model accounts for the growth of a spherical tumor surrounded by normal tissue. To 

calculate the growth rate of the tumor we took into account proliferation of Cancer cells[1–5]. To calculate the 

growth stretch ratio λg we used the expression  

dλg

dt
=

1

3

R
T

T0
λg,  (1) 

The concentration of cancer cells is expressed as: 

∂T

∂t
+ 𝛁 ⋅ (−DT𝛁𝐓 + 𝐯𝐬T) = RT =

k1 (
cox

K2 + cox
) T − 𝐶𝑎𝑃𝐷𝐿1(nInIn + nInIAPC + nadTE)T

 (2) 

Where the first right-hand side term describes the proliferation of cancer cells due to oxygen and the last 

term describes the killing of cancer cells by innate cells, immature antigen presenting cells and effector CD8+ 

T cells. 

Enhancing the killing of cancer cells by immune cells with anti-PDL1 antibody 

𝐶𝑎𝑃𝐷𝐿1 =
KT + konT aPDL1

KT
 (3) 
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Where CaPDL1 describes the increase of cancer cells killing by the immune cells due to the 

administration of anti-PDL1 antibody. KT is a parameter that describes the effectiveness of the treatment. 

kon is binding rate constant of anti-PDL1 to the tumor cells T 

Biphasic formulation of the tumor’s mechanical behavior 

Tumor growth is modelled based on principles from continuum mechanics and particularly the multiplicative 

decomposition of the deformation gradient tensor (F). The kinematics of the tumor are decomposed into two 

components, the growth component (Fg) that accounts for the growth of the tumor and the elastic component 

(Fe) that accounts for mechanical interactions of the tumor with the surrounding normal tissue [23, 24]: 

F = Fe Fg, (4) 

The growth component is set to be homogenous and isotropic [1,2,6] 

 Fg = λg Ι, (5) 

where λg is defined in Eq. (6). The elastic component Fe of the deformation gradient tensor is determined from 

Eq. (9) as 

Fe = F Fg
−1. (6) 

The interstitial fluid velocity vf depends on the interstitial hydraulic conductivity kth and the interstitial fluid 

pressure gradient, given by Darcy’s law [7]: 

𝐯𝐟 = −kth𝛁𝐩𝐢 + vs (7) 

Combining Darcy’s law with the continuity equation (∇ ⋅ vf = Q) yields the steady-state fluid transport model 

[7,8]: 

−kth∇2pi = Q − ∇ ⋅ (𝐯s) (8) 

where Q denotes the fluid flux entering from the blood vessels into the tumor or the surrounding normal tissue 

minus the fluid flux exiting through lymphatic vessels [9]:  

Q = LpSv(pv − pi) − LplSvl(pi − pl) (9) 

where Lpl, Svl and pl are the corresponding quantities for lymphatic vessels, and pi is the interstitial fluid pressure. 

According to the biphasic theory for soft tissues [10], the total stress tensor σtot is the sum of the fluid phase 

stress tensor σf = –piI and the solid phase stress tensor σs. As a result, the stress balance is written as: 

∇ ⋅ 𝛔𝐭𝐨𝐭 = 0 ⇒ ∇ ⋅ (𝛔𝐬 − pi𝐈) = 0, (10) 

vs=du/dt (11) 
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where the stress tensor of the solid phase σs is given by [11]: 

𝛔s = Je
−1𝐅e

∂W

∂𝐅e
T, (12) 

W =
μ(−3+Ι1)

2
+

K(−1+Je)2

2
, (13) 

Where W is the strain energy density function, I1 the first invariant of the right Cauchy-Green deformation 

tensor and Je is the determinant of Fe.  

 

Oxygen transport equation 

A convection-diffusion-reaction type equation is employed for the calculation of the rate of change of oxygen 

in the tumor. The reaction term is related to the oxygen transferred from the vessels to the tumor, minus the 

amount of oxygen consumed by cells [1,2], i.e., 

∂cox

∂t
+ ∇ ⋅ (cox𝐯f) = Dox∇2cox −

Aoxcox

cox+kox

T

T0
+ PerSV(Ciox − cox), (14) 

where cox is the oxygen concentration, Dox is the diffusion coefficient of oxygen in the interstitial space, Aox and 

kox are oxygen uptake parameters, Per is the vascular permeability of oxygen that describes diffusion across the 

tumor vessel wall and Ciox is the oxygen concentration in the vessels. 

Pro-inflammatory cytokines from immune cells 

The pro inflammatory cytokines can be transported by convection and diffusion: 

∂c

∂t
+ 𝛁 ⋅ (−Dc𝛁𝐜 + 𝐯𝐟c) = kInIn + kTETE + kAPCAPC − δcc (15) 

Where the right-hand side terms describe the production of pro inflammatory cytokines by innate immune 

cells, effector CD8+ and antigen presenting cells. The last term describes the degradation of cytokines. 

Immature antigen presenting cells 

The immature antigen presenting cells are expressed as: 

∂IAPC

∂t
+ 𝛁 ⋅ (−DIAPC𝛁𝐈𝐀𝐏𝐂 + 𝐯𝐬IAPC) = λIAPC (

c

KcAPC + c
) − δIAPCIAPC

−χAPC (
c

KcAPC + c
) 𝐶𝑎𝑃𝐷𝐿1nInIAPCT − χAPC (

c

KcAPC + c
) nAg

IAPCAg

 (16) 

Where the first right-hand term describes the source of immature antigen presenting cells, the second term 

the degradation and the last term the reduction due to activation. The last two terms describe the activation 

to antigen presenting cells. The depends on the pro-inflammatory cytokines and the interaction of immature 

antigen presenting cells with the tumor cells and antigen. 

Antigen presenting cells 
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The antigen presenting cells are expressed as: 

∂APC

∂t
+ 𝛁 ⋅ (−DAPC𝛁𝐀𝐏𝐂 + vsAPC) =

χAPC (
c

KcAPC + c
) 𝐶𝑎𝑃𝐷𝐿1nInIAPCT + χAPC (

c

KcAPC + c
) nAg

IAPCAg − δAPCAPC
  

Where the first two right-hand term describes the increase of antigen presenting cells due to the activation 

from immature antigen presenting cells and the last term is a degradation term. 

Effector CD8+ T cells 

The effector CD8+ T cells are expressed as: 

∂TE

∂t
+ 𝛁 ⋅ (−DTE𝛁𝐓𝐄 + 𝐯𝐬TE) = mAPCAPC − δTETE (17) 

Where the first term describes the source of effector CD8+ T cells which is assumed to be analog to the 

concentration of antigen presenting cells responsible for the activation of CD8+ T cells in the lymph nodes. 

The last term is the degradation of CD8+ T cells. 

Innate cells 

The innate immune cells that induce cytolysis are expressed as: 

∂In

∂t
+ 𝛁 ⋅ (−DIn𝛁𝐈𝐧 + 𝐯𝐬In) = λIn (

c

K𝐼𝑛 + c
) − δInIn (18) 

Where the first term describes production of innate cells which depends on the concentration of pro-

inflammatory cytokines. 

Antigen 

The concentration of cancer cells is expressed as: 

∂Ag

∂t
+ 𝛁 ⋅ (−DAg

𝛁𝐀𝐠 + 𝐯𝐟Ag) = 𝐶𝑎𝑃𝐷𝐿1(nInIn + nadTE)T − nAg
IAPCAg (19) 

Where the first right-hand side term describes the production of antigen induced by the cytolytic effect of 

innate cells and effector CD8+ T cells. The last term describes the antigen uptake by the immature antigen 

presenting cells. 

Immunotherapy, immune checkpoint blockade with anti-PDL1 antibody 

The equations for delivery of immunotherapy have the form: 

∂aPDL1

∂t
+ ∇ ⋅ (aPDL1 𝐯f)

= D𝑎𝑃𝐷𝐿1∇2aPDL1 + PerSV(Civ − aPDL1) + LpSV(PV − pi)(1 − σf)Civ 

(20) 

where Civ is the vascular concentration of the antibody and is taken to be Civ = exp(–(t–t0)/kd) describing a bolus 
injection, with t0 the time of drug injection and kd the blood circulation decay of immunotherapy, σf is the 
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reflection coefficient, P is the vascular permeability and Lp, Sv and pv are the hydraulic conductivity, 
vascular density and vascular pressure, respectively 

 3.  Technical improvements (specialization/modularity) 
 of the DCoMEX-BIO codebase:  
To abstract the definition and selection of the physics equations, a base class was introduced. This base class 
encapsulates all operations and properties specific to each advection-diffusion-reaction equation, providing a 
common structure that can be inherited and extended by specialized equation implementations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the code snippet, the aforementioned base class can be seen denoted “PhysicsModelBuilderBase” and it 
gathers properties such the ordering of the Degrees of freedom of the model the Boundary and initial 
conditions of the model, the mesh, user defined choices regarding the time integration algorithm and its 
properties and data regarding the current state of the model.  

It also contains the implementation of the main required methods such as the construction of the 
analyzer objects, the update of its solution, the imposition of boundary conditions, the initialization of the 
solution structures and other methods as seen in the next code snippet from MGroup.DrugDeliveryModel 
application 
 
 
 
 
 
 
 

public abstract class PhysicsModelBuilderBase : IPhysicsParaviewDataProvider 
{ 
    public SolutionStrategies GetDefaultTimeSolutionPreferences() 
    { 
        return new SolutionStrategies(ParentAnalyzerType.GeneralizedA, 
SolveForInitialConditions.DontSolve, TimeIntegrationOrderChoice.useFirstOrder); 
    } 

public List<(BC, ConvectionDiffusionDof[], double[][], double[])> DirichletBCs { get; set; 
} 
    public List<(BC, ConvectionDiffusionDof[], double[][], double[])> NeumannBCs { get; 
set; } 
    public List<(BC, ConvectionDiffusionDof[], double[][], double[])> 
ConvectionDiffusionDirichletIC; 
 
    public GlobalAlgebraicModel<CscMatrix> algebraicModel; 
    public ComsolMeshReader Mesh { get; set; } 
 
    public Dictionary<int, double[]> deformedStateNodeDisplacements { get; set; } 
 
    public List<DataEntry> ComsolInitialConditionData; 
 
    public SolutionStrategies solutionPreferences { get; set; } 

 

 

 

 

 

} 
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“Physics model builders” inherit from this base class and extend it to implement specialized methods 

such as the method “GetModel” that implements equation specific expressions and of course they hold the 
parameters that appear in each equation as well as the solution of the other fields that appear in the equation 
as well (concentration of other agents of the immune system or current interstitial fluid velocity etc.). In the 
following code snippet the appropriate model builder that implements the cancer cell concentration equation 
can be viewed and as it is illustrated it has as a property the concentration of the other agents of the immune 
system (elementwise Dictionaries). The implementation of the actual equation formula in the GetModel() 
method can also be seen. 

 
 
 
 
 
 
 
 
 

public abstract class PhysicsModelBuilderBase : IPhysicsParaviewDataProvider 
{ 
   . . .  

public (IParentAnalyzer analyzer, ISolver solver, IChildAnalyzer 
loadcontrolAnalyzer) GetAppropriateSolverAnalyzerAndLog 

    (Model model, double pseudoTimeStep, double pseudoTotalTime, int currentStep) 

    . . . 

   private List<(INode node, IDofType dof)> GetTotalWatchDofs(Model model) 

    . . . 

   public List<double> RetrievePhysicsSolution(IChildAnalyzer childAnalyzer) 

    . . . 

   public void UpdateSharedQuantityDictionaryOriginal(IChildAnalyzer 

childAnalyzer, Model     model, Dictionary<int, double> domainCox) 

    . . . 

   public virtual void AddInitialConditions(Model model) 

    . . . 

   public void AddBoundaryConditions(Model model) 

    . . . 

} 

public class TBuilder : PhysicsModelBuilderBase, IPhysicsBuilder { 
    private double k1 { get; } 
    private double K2 { get; } 
    private double D_T { get; } 
    private double n_In { get; } 
    private double n_ad { get; } 
    private double k_on { get; } 
    private double KT { get; } 
    private Dictionary<int, double> cox { get; } 
    private Dictionary<int, double> aPDL1 { get; } 
    private Dictionary<int, double> In { get; } 
    private Dictionary<int, double> IAPC { get; } 
    private Dictionary<int, double> TE { get; } 
   public void AddBoundaryConditions(Model model) 

    . . . 

} 
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Subsequently the coupled solution coordinator Coupled5eqNLProvider.cs was accordingly adjusted to account 
for a coupled model comprised of the PHG subproblem builder and an arbitrary number of advection-diffusion-
reaction equation model builders.  The refined class is named  

 

public class TBuilder : PhysicsModelBuilderBase, IPhysicsBuilder { 
. . . 
public TBuilder(. . . . ) 
{ 
. . . . 
this.productionFunctionParametricDefinitionTumor = new Func<double, double, double, 
double, double, double, Func<double, double>> 
((cox, aPDL1, In, IAPC, TE, divVsolid) => new Func<double, double>(T =>  k1*cox*T/(K2+cox) 
- (n_In*In +n_In*IAPC+ n_ad*TE)*T - (k_on/KT)*aPDL1* (n_In * In + n_In * IAPC + n_ad * TE) 
* T * T -divVsolid*T)); 
this.productionFunctionDerivativeParametricDefinitionTumor = new Func<double, double, 
double, double, double, double, Func<double, double>> 
((cox, aPDL1, In, IAPC, TE, divVsolid) => new Func<double, double>(T => k1 * cox / (K2 + 
cox) - (n_In * In + n_In * IAPC + n_ad * TE) - 2*(k_on / KT) * aPDL1 * (n_In * In + n_In * 
IAPC + n_ad * TE) * T - divVsolid )); 
. . . . 

} 
public Model GetModel() 
{ 
var vs = SolidVelocity[elementConnectivity.Key]; 

convectionDomainCoefficients[elementConnectivity.Key] = new double[] { 
vs[0][0], vs[0][1], vs[0][2] }; 

independentProductionCoefficients[elementConnectivity.Key] = 0; 
double divVsolid = div_vs is null ? 0 : div_vs[elementConnectivity.Key][0]; 
. . . . . 
ProductionFuncWithoutConstantTerm[elementConnectivity.Key] = domainId == 0 ? 
productionFunctionParametricDefinitionTumor(elementCox, elementAPDL1, elementIn, elementIAPC, elementTE, 
divVsolid) : productionFunctionParametricDefinitionHost(elementCox, elementAPDL1, elementIn, elementIAPC, 
elementTE, divVsolid); 
ProductionFuncWithoutConstantTermDDerivative[elementConnectivity.Key] = domainId == 0 ? 
productionFunctionDerivativeParametricDefinitionTumor(elementCox, elementAPDL1, elementIn, elementIAPC, 
elementTE, divVsolid) : productionFunctionDerivativeParametricDefinitionHost(elementCox, elementAPDL1, 
elementIn, elementIAPC, elementTE, divVsolid); 
} 
//Create Model 
. . . 
var model = modelProvider.CreateModelFromComsolFile(convectionDomainCoefficients, 
diffusionCoefficient, 
dependentProductionCoefficients, independentProductionCoefficients, capacity, 
ProductionFuncWithoutConstantTerm, ProductionFuncWithoutConstantTermDDerivative); 
return model; 
} 
} 

public CoupledPhysicsModelFiniteStrain(PorousModelNonLinearProvider coupledModelProvider, 
List<IPhysicsBuilder> PhysicsBuilders, ComsolMeshReader comsolReader, Dictionary<int, 
double> domainCOx, Dictionary<int, double> T, Dictionary<int, double> lambda, 
Dictionary<int, double[][]> pressureTensorDivergenceAtElementGaussPoints,          
Dictionary<int, double[]> div_vs, Dictionary<int, double[]> FluidSpeed, Dictionary<int, 
double[][]> solidVelocityAtElementGaussPoints,double kth_tumor, double timeStep, double 
totalTime, int incrementsPerStep, double kth_host=0, Dictionary<int, double> 
elementPressureAtSingleGPs = null, List<ITimeDependentBuilder> timeDependentBuilders = 
null, bool includeSolidVelocityInFluidVelocity = false) 
        { 
            . . . . 
            porousModelProvider = coupledModelProvider; 

      physicsBuilders = PhysicsBuilders; 
       . . . . 

   } 
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4. Computational model – Validation results:  
The validation procedure was comprised of a set of simplified models, closely following the 

development procedure steps gradually advancing towards the finalized model that is presented next. In the 
DrugDeliveryModel code repository this example can be found as: ImmunoModelingMultiInjection.cs (method 
RunGmsh1752WithImmunoWithStabil() ) 

 
Figure 2 Computational domain of the Immune cell and cancer cell interactions model 

The finalized benchmark model simulates the actual experimental applications, and is based on a two-
region model consisting of a 3D rectangular host domain representing healthy tissue, with dimensions of 0.2 m 
× 0.2 m × 0.2 m. A spherical tumor region is nested at the center of the domain with a radius of 0.003 m. To 
reduce computational complexity, symmetry boundary conditions are applied, solving for one-eighth of the 
physical domain. The outer rectangular host tissue represents normal, healthy tissue, while the spherical region 
represents the tumor. Symmetry boundary conditions are applied on the symmetry planes, where the normal 
displacements for the hyperelastic model are fixed, and only slip degrees of freedom are permitted in the 
tangential directions. For the convection-diffusion-reaction equations that predict the concentration of the 
immune system agents, zero flux is imposed on the symmetry planes, ensuring no mass transfer across these 
boundaries. Dirichlet boundary conditions are applied to the outer planes of the cube, fixing the concentrations 
on these faces. 

 
A time-dependent solver is employed, with very fine time-stepping in the begging and gradually 

increasing, as described from the following ranges and corresponding time steps sizes: {(0, 0.2, 40) seconds, 
(40, 40, 4000) seconds, and range(4000, 2000, 1209600) seconds}, effectively solving the problem over a total 
of 14 days, equivalent to 1,209,600 seconds. The initialization of the simulation corresponds to a day of the 
experiment where the tumor is large enough to be model by continuum mechanics theory. The computational 
mesh consists of 1,730 vertices, resolving a total of 34,774 degrees of freedom, with an additional 11,459 
internal degrees of freedom. 
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Figure 3: Benchmark Application discretized domain 

Anti-PD-L1 injections are modeled as transient events, occurring on days 7, 10, and 13 (or 7,9 and 11 
depending on the studied experiment). The initial concentrations of cancer cells and immune system agents 
are provided in Table 1, while the initial stretch value for the growth equation ODE is set to 1, indicating no 
initial deformation of the tissue. 

 
The solver is configured using a Generalized Alpha Solver, with a second-order scheme applied to the 

porous model and a first-order scheme for both the growth ODE and the advection-diffusion-reaction 
equations. The solver uses a Newton-Raphson iterative solution procedure to handle nonlinearities that arise 
in the equations. The anti-PD-L1 injection profile is defined by a step function, with a continuous derivative up 
to the second order and an exponential decay, to simulate drug release. 

 
The model is validated by comparing the results with a commercial software (COMSOL) widely used for 

such models. Specifically, validation is performed by comparing the time-history solution at a set of strategically 
placed logged nodes, starting from the tumor region and extending outward into the healthy tissue, allowing 
for a comprehensive assessment of tumor progression and immune response. A detailed list of the model 
parameters can be found in Table 1 of the present report. 

 
our nodes are considered foreach studied field: T, p , λg, T_E, In, IAPC, cox, c, aPDL1, APC, Ag, uz while 

X-axis values’ units are “s” seconds  
 

  

Figure 4a,b :Comparison of MSolve and COMSOL soution at four selected nodes: T and p equations 
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Figure 5a,b :Comparison of MSolve and COMSOL soution at four selected nodes: λg and TE equations 

  

  

Figure 6a,b :Comparison of MSolve and COMSOL soution at four selected nodes: In and IAPC equations 

  

 

  

Figure 7a,b :Comparison of MSolve and COMSOL soution at four selected nodes: In and IAPC equations 
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Figure 8a,b :Comparison of MSolve and COMSOL soution at four selected nodes: aPDL1 and APC equations 

 

 

  

Figure 9a,b :Comparison of MSolve and COMSOL soution at four selected nodes: In and IAPC equations 
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5.  Experimental data  
The original experiments that were replicated computationally in this project, are described in the following 
paper:”Voutouri C, Mpekris F, Panagi M, Krolak C, Michael C, Martin JD, Averkiou MA, Stylianopoulos T. 
Ultrasound stiffness and perfusion markers correlate with tumor volume responses to immunotherapy. Acta 
Biomaterialia. 2023;167:121-134. doi:10.1016/j.actbio.2023.06.007” 
 
The simulated time point in MSolve denoted as start of the simulation refers to a later point in the experimental 
procedure when the tumor is large enough to be modeled by continuum mechanics theory. This offset value is 
given as day 10 of the experiment for 4T1 and E0071 tumors, day 4 for MCA205 tumors and day 7 for B16F10. 
 
 

6.  Surrogate model development  
Problem Representation 

The task is to create a surrogate model that approximates the solution manifold of the stochastic tumor 
microenvironment model  efficiently while bypassing the high computational cost associated with traditional 
solvers utilized in the high-fidelity FEM method. 
 

6.1 Data Generation for Surrogate Modeling 

In accordance with the classical Monte Carlo simulation workflow, a high-fidelity finite element method (FEM) 
model was used to generate the training datasets. For each simulation, input parameters were sampled from 
their respective probability distributions, ensuring adequate representation of the stochastic nature of the 
problem.  
It is important to note that the subsequent dataset partitions result in a smaller proportion of data allocated to 
training compared to testing. This approach is deliberate, as the primary objective is to minimize the size of the 
training set. The rationale behind this strategy is to prioritize the use of the trained neural network for 
evaluating the test data, thereby achieving a significant speedup in the overall stochastic or optimization 
analysis. 
In this regard, a 4-fold partition was initially considered in the form of training, validation, test and 
analysis/production datasets, but since the operational difference between the test and analysis datasets 
would be miniscule, we ultimately resolved to adhere to the classical train, validation, test partition scheme. 
 

Dataset 1: 5 Equations 

 The chosen, uniformly distributed, stochastic parameters were the following: 
• Shear Modulus:  𝜇 ∼ 𝑈[5,50]𝐾𝑃𝑎 

• Vascular Density:  𝑆𝑣 ∼ 𝑈[5 ⋅ 103, 2 ⋅ 104] 1 𝑚⁄  

• Hydraulic Conductivity: 𝐾𝜃 ∼ 𝑈[7.52 ⋅ 10−12, 7.52 ⋅ 10−10] 𝑚2 (𝐾𝑃𝑎 ⋅ 𝑠𝑒𝑐)⁄  

 

This process produced a dataset consisting of 2,000 samples. The dataset was then partitioned into training 
and test sets, with 20% of the samples allocated to training, 10% for validation and the remaining 70% reserved 
for testing. The DCoMEX-BIO prototype model was used for this dataset that accounts for 5 equations 
(displacement, pore pressure, oxygen concentration, growth equation, cancer cells concentration equation) 
and is described in report D5.2. 
 

Dataset 2: 12 Equations with 3-stage Immunotherapy 

The dataset was produced by solving the full model of 12 equations with immunotherapy sessions 

at 3 discrete time points: 
1. First session at 7 days 

2. Second session at 10 days 

3. Third session at 13 days 
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The chosen, uniformly distributed, stochastic parameters were the following: 
1. Shear Modulus:  𝜇 ∼ 𝑈[5,50]𝐾𝑃𝑎 

2. Vascular Density:  𝑆𝑣 ∼ 𝑈[5 ⋅ 103, 2 ⋅ 104] 1 𝑚⁄  

3. Hydraulic Conductivity: 𝐾𝜃 ∼ 𝑈[7.52 ⋅ 10−12, 7.52 ⋅ 10−10] 𝑚2 (𝐾𝑃𝑎 ⋅ 𝑠𝑒𝑐)⁄  

4. 𝑝𝑣 ∼ 𝑈[0.6667,6.667]𝐾𝑃𝑎 

5. 𝑘1 ∼ 𝑈[ 1.574 ⋅ 10−6, 3.988 ⋅ 10−6] 1 𝑠𝑒𝑐⁄  

6. 𝐿𝑝 ∼ 𝑈[ 1.56 ⋅ 10−8, 8 ⋅ 10−7]
𝑚

𝐾𝑃𝑎⋅𝑠𝑒𝑐
 

7. 𝑠𝑓 ∼ 𝑈[0.136⬚⬚, 0.146⬚] 

8. 𝑃𝑒𝑟 ∼ 𝑈[4.16 ⋅ 10−9, 6.225 ⋅ 10−8] 𝑚 𝑠⁄  

9. 𝐾𝑇 ∼ 𝑈[1.273 ⋅ 10−6, 1.273 ⋅ 10−4]
𝑘𝑔

𝑚3⋅𝑠𝑒𝑐
 

10. 𝑘𝑜𝑛 ∼ 𝑈[1.157 ⋅ 10−8, 1.157 ⋅ 10−2]
𝑚3

𝑘𝑔⋅𝑠𝑒𝑐
 

11. 𝑘𝑑 ∼ 𝑈[2.998 ⋅ 104, 9.297 ⋅ 104]𝑠𝑒𝑐 

 

 

 
Dataset 3: 12 Equations with Immunotherapy 

The dataset was produced by solving a model of 12 equations with immunotherapy sessions 

at 3 discrete time points: 
1. First session at 7 days 

2. Second session at 9 days 

3. Third session at 11 days 

 

The chosen, uniformly distributed, stochastic parameters were the following: 
1. Shear Modulus:  𝜇 ∼ 𝑈[5,50]𝐾𝑃𝑎 

2. Vascular Density:  𝑆𝑣 ∼ 𝑈[5 ⋅ 103, 2 ⋅ 104] 1 𝑚⁄  

3. Hydraulic Conductivity: 𝐾𝜃 ∼ 𝑈[7.52 ⋅ 10−12, 7.52 ⋅ 10−10] 𝑚2 (𝐾𝑃𝑎 ⋅ 𝑠𝑒𝑐)⁄  

4. 𝑝𝑣 ∼ 𝑈[0.6667,6.667]𝐾𝑃𝑎 

5. 𝑘1 ∼ 𝑈[ 1.574 ⋅ 10−6, 3.988 ⋅ 10−6] 1 𝑠𝑒𝑐⁄  

6. 𝐿𝑝 ∼ 𝑈[ 1.56 ⋅ 10−8, 8 ⋅ 10−7]
𝑚

𝐾𝑃𝑎⋅𝑠𝑒𝑐
 

7. 𝑠𝑓 ∼ 𝑈[0.136⬚⬚, 0.146⬚] 

8. 𝑃𝑒𝑟 ∼ 𝑈[4.16 ⋅ 10−9, 6.225 ⋅ 10−8] 𝑚 𝑠⁄  

9. 𝐾𝑇 ∼ 𝑈[1.273 ⋅ 10−6, 1.273 ⋅ 10−4]
𝑘𝑔

𝑚3⋅𝑠𝑒𝑐
 

10. 𝑘𝑜𝑛 ∼ 𝑈[1.157 ⋅ 10−8, 1.157 ⋅ 10−2]
𝑚3

𝑘𝑔⋅𝑠𝑒𝑐
 

11. 𝑘𝑑 ∼ 𝑈[2.998 ⋅ 104, 9.297 ⋅ 104]𝑠𝑒𝑐 

 

Dataset 3: 12 Equations without Immunotherapy 

 

The following parameters remained constant: 
 

1. 𝑠𝑓 = 0.136  
2. 𝑃𝑒𝑟 = 4.16 ⋅ 10−9 𝑚 𝑠⁄   
3. 𝐾𝑇 =  1.243 ⋅  10−6 𝑘𝑔

𝑚3⋅𝑠𝑒𝑐
 

4. 𝑘𝑜𝑛 =  1.157 ⋅  10−8 𝑚3

𝑘𝑔⋅𝑠𝑒𝑐
 

5. 𝑘𝑑 = 2.998 ⋅ 104𝑠𝑒𝑐 

 

 

The chosen, uniformly distributed, stochastic parameters were the following: 
1. Shear Modulus:  𝜇 ∼ 𝑈[5,50]𝐾𝑃𝑎 

2. Vascular Density:  𝑆𝑣 ∼ 𝑈[5 ⋅ 103, 2 ⋅ 104] 1 𝑚⁄  

3. Hydraulic Conductivity: 𝐾𝜃 ∼ 𝑈[7.52 ⋅ 10−12, 7.52 ⋅ 10−10] 𝑚2 (𝐾𝑃𝑎 ⋅ 𝑠𝑒𝑐)⁄  

4. 𝑝𝑣 ∼ 𝑈[0.6667,6.667]𝐾𝑃𝑎 

5. 𝑘1 ∼ 𝑈[ 1.574 ⋅ 10−6, 3.988 ⋅ 10−6] 1 𝑠𝑒𝑐⁄  

6. 𝐿𝑝 ∼ 𝑈[ 1.56 ⋅ 10−8, 8 ⋅ 10−7]
𝑚

𝐾𝑃𝑎⋅𝑠𝑒𝑐
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6.2 Discrete Time Point Prediction Surrogate 

The goal was to construct and train a surrogate model that accurately predicts the value of the tumor region in 
discrete points in time given the value of stochastic parameters  (3 parameters for the 5 equation model and 
11 or 6 parameters for the advance model that accounts for the immune system reaction). 
 

Surrogate Model: FFNN Architecture 

To efficiently emulate the behavior of the system, a Feedforward Neural Network (FFNN) was chosen as the 
surrogate model. After thorough experimentation an optimal architecture was produced with respect to the 
accuracy of the network. 
 

The FFNN consists of multiple stacked blocks, each composed of: 
1. Batch Normalization: Normalizes the input to a layer to stabilize training and reduce sensitivity to 

hyperparameter tuning. 
2. Linear Layer: Performs linear transformations based on learned weights and biases. 
3. Leaky ReLU Activation: Introduces non-linearity and mitigates possible issues related to the vanishing 

gradient problem. 
4. Final Layer: The final linear layer transforms the internal representation of the data into the predicted 

output. 
 

Training Phase 

The surrogate model was trained on the input-output data pairs using the following parameters: 
• Optimizer: the Adam Optimizer, which adapts the learning rate for each parameter based on estimates 

of first and second moments of the gradients. This results in faster convergence. 
• Loss Function: the Mean Squared Error (MSE), which measures the squared differences between the 

predicted and actual simulation results. Minimizing this loss ensures that the FFNN accurately predicts 
the system response. 

• Number of Epochs: the network is trained for 8,000 epochs 

• Batch size:  the input data were given as batches 128 ensuring a comprehensive search for optimal 
weights and biases across many iterations. 

 

 

Validation and Performance Evaluation 

After training, the performance of the surrogate models was evaluated with the Relative Root Mean Square 
Error (RRMSE) on the test set.  

1. Final Volume prediction model at Dataset 1: RRMSE = 2% 

Given the empirical engineering error threshold of 5%, the trained surrogate models produce predictions that 
are highly accurate relative to the original, exact simulations at a minuscule fraction of the high-fidelity model’s 
execution time. 
 
6.3 Full Timeseries Response Surrogate: Hybrid CAE-FFNN Architecture 

The surrogate model consists of a composite architecture that leverages the representational and feature-
extraction power of Convolutional Auto-Encoders (CAEs) combined with classical feedforward neural 
networks (FFNNs). 
 

• Encoder Network: The component is adept at capturing localized patterns and spatial hierarchies within 
the input data. In the context of parametric ODEs, it was utilized to extract latent spatio-temporal 
features from discretized representations of the system’s solution space and encode them into a low-
dimensional latent space. 

• FFNN: The FFNN is responsible for learning the global parameterized mapping from stochastic input 
parameters to the CAE’s latent space.  
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• Decoder Network: This component takes the low-dimensional latent space representation of the 
system’s solution space, as encoded by the Encoder part, and refines them through a series of inverse 
pooling and convolutional networks. Finally, it projects the latent features into the desired solution 
space. In combination with the FFNN, they define a mapping from input parametric space to the solution 
space. 

 
To improve computational efficiency, the surrogate model performs a dimensionality reduction via an 
information-preserving latent space. The CAE architecture aims to capture the essential dynamics of the ODE 
system in this reduced space. 
 
Architecture 

• The FFNN consists of 2 hidden layers of 500 neurons with the GELU activation function. 
• The Auto-Encoder consists of one dimensional convolution, max pooling and layer-normalization 

layers, followed by the GELU activation function, applied in succession. 
The latent space had a dimension of 6. 

 
Training Phase 

The training phase is divided into two parts: 
1. CAE training: the Autoencoder is trained by learning to match its output with the input solution 

timeseries creating the latent space representation in the process.  
2. FFNN training: the Feed-Forward network is trained to map elements of the stochastic parameters 

space to the latent CAE space. 
 

Inference Phase 

During inference, the surrogate model bypasses the high-cost FEM solver entirely, thus significantly reducing 
the computational burden. Firstly, the FFNN takes as input the stochastic parameters’ vector and maps it to a 
point in the latent space. Then, the Decoder network upsamples this projection to produce a timeseries 
approximaiton of the solution response. 
 
Performance Metrics 

The evaluation of the surrogate model for the 5 equations was performed on a timeseries dataset consisting of 
2000 samples of solution vectors over 850 timesteps. Each physical field of the problem was treated separately 
with a different CAE model. 
The surrogate’s efficiency and accuracy were evaluated based on the relative root mean square error (RRMSE), 
with values of approximately 3% on the test set, while achieving a speedup S=4.94 on the total execution time 
of the stochastic analysis compared to the non-surrogate approach. 
 
Dataset Creation 

The analyses involved in the creation of the surrogates were executed in MELUXINA Supercomputer 
infrastructure. More details about the runs are given in the performance evaluation report for DCOMEX-ΒΙΟ in 
D.8.1.  
 

6.4 Conditional Neural Field Surrogate for Dataset 2 

For Dataset 2, we trained a Neural Field to predict the timor volume conditioned on both the 11 input 
parameters as well as the current time. The architecture chosen was inspired by the DeepONet architecture. 
In more detail the parameters were first processed using five fully connected layers with widths 11,30,50,50 
and 50 whereas the current time is input to four layers of width 1,10,50,50. Subsequently the final inputs of 
both these networks are combined using a scalar product. We note that variations in the architecture choice 
were also explored and did not lead to significant changes in the final results. 
The chosen architecture was trained using the Adam Optimizer using 70 percent of the data set while the 
remaining data points were used for either validation or testing.  
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On the training data set, we achieved a RMSE of 0.6 percent averaged over all time steps. 
On the test data set, we achieved a RMSE of 4.7 percent averaged over all time step. Especially the drastic 
change in the systems dynamics after the treatment appeared to be challenging for the surrogate. As the error 
is still below 5 percent and thus the threshold we selected, the results were still acceptable especially given 

that this surrogate is able to offer significant speed up compared to the original model 

7.  Bayesian inference 
 

7.1. Proof of Concept on 5-equation model with three parameters 
After we have replaced the 5-equation-model by a surrogate model as described in the previous section to 
ensure a fast evaluation, we inferred the parameters of the model given some observations using a Bayesian 
inverse analysis. 
To do so, we assumed uniform priors on the three model parameters and solved a Bayesian inverse problem. 
We sampled from the posterior using the Korali implementation of tMCMC. Whereas this leads to the necessity 

Figure 10 Conparison of solution of computational model and surrogate 

prediction of a sample point of Training Data 

Figure 11 Conparison of solution of computational model and surrogate 

prediction of a sample point of Test Data 
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of one surrogate model evaluation (in the likelihood computation) for each sample, we can manage 
to keep the computational cost on a reasonable level due to the surrogate model. 
Illustrative results for one test case can be found below. The single observed data point is marked with a red x 
and the posterior encapsulates this data points. We observe that the influence of the parameters k1 and Sv is 
small compared to μ which is indicated by the shape of the posterior.  
 

 

  

 

 
Figure 12 a,b and c : influence of the parameters mu k1 and sv 

7.2. Parameter Inference for the experimental data using a Surrogate Model 
Based on the conditional Neural Field Surrogate Model for Dataset 2 of the 12 equation model with 11 

parameters, we solved the Bayesian Inverse Problem of finding the posterior for the parameters given 
experimental data. We generated samples from this posterior using TMCMC. Despite only scarce and noisy 

data points we are able to learn a distribution of parameters that is able to fit the data of interest. 
The Figure shows the experimental data (red crosses), the posterior mean of the learned model (blue ) as well 
as the 20 and 80 quantile of the predictive uncertainty of this model. This indicates that the model can be 
successfully calibrated using experimental data. 
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We are moreover reporting some illustrative marginal distributions for the obtained parameters. 

Here, sigma is the parameter for the noise of the experimental data, whereas the other two figures show two 
of the eleven parameters. All values are normalised between 0 and 1. 

  

 

Figure 14a: posterior distribution of the noise parameter, sigma,  14b: posterior distribution of parameter Sv,  14c: posterior distribution 

parameter μ,   

Figure 13 Mean value response, 80th and 20th quantiles response of the learned 

posterior distribution 
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8.  Optimization 
Deterministic case: 

For a set of determined constitutive parameters of the model, the response of the system relies only of the 

discrete time points of the immunotherapy injection. And the volume of the tumor region at the end of the 

computational experiment (14 days) can be expressed as   

V14 = 𝐹(𝑇1, 𝑇2, 𝑇3) 

In order to obtain an optimal time sequence of the immunotherapy injection we aim to minimize the function 

𝐹(𝑇1, 𝑇2, 𝑇3)  subject to the following constraints: 

• 𝑇1  ∈ { 7, 8, 9, 10, 11} that represents the first injection 

• 𝑇2  ∈ { 8, 9, 10, 12} that represents the second injection with the constraint 𝑇2 > 𝑇1 

• 𝑇3  ∈ {9, 10, 13} that represents the third injection with the constraint 𝑇3 > 𝑇2 

 

Thus the optimization problem is: 

Minimize 𝐹(𝑇1, 𝑇2, 𝑇3) 

Subject to:  

𝑇1  ∈ { 7, 8, 9, 10, 11}                𝑇2  ∈ {𝑇1 + 1 , … . . , 12}                  𝑇3  ∈ { 𝑇1 + 1, … . . , 13} 

It is a problem with three design parameters with discrete values. Appropriate optimization algorithms for 

that case include the Simulated Annealing (SA) , Genetic algorithms (GA) and others (Particle Swarm 

Oprimization (PSO etc.). However, the specified design space dimensions are very limited and results in only 

20 possible combinations of the design parameters values. For that reason we will execute an Exhaustive 

Search for the given set of parameters and no use of a NN is necessary. Figure 10 depicts the results of the 

time evolution of tumor volume value for each time point combination. 
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Figure 15 Time evolution of tumor region volume for different immunotherapy time sequences 

The minimum volume value is obtained as 172.5 mm3 for the time sequence of injections {7, 8, 9 days}. 

Supplementary Tables  
 

Supplementary Table S1. Parameters and their values used in the model 

Parameter Description Value Reference 

μ shear modulus 
5.00 kPa for normal tissue; 

22.44 kPa for tumor 
[12–14] 

K Bulk modulus 
6.667 kPa for normal tissue 

216.7 kPa for tumor tissue 
 

kth 
hydraulic 

conductivity 

6.5×10-11 m2/Pa∙day for normal tissue: 

6.5×10-9 m2/Pa∙day for tumor tissue  
[14] 

Sv Vascular density 
7000 m-1 for normal tissue 

7000 m-1 for tumor tissue 
[15] 

Ciox 
initial oxygen 

concentration 
0.2 mol∙m−3 [16] 

Dox 
oxygen diffusion 

coefficient 

1.55×10−4 m2∙day−1 for tumor tissue 

1.55×10−4 m2∙day−1 for normal tissue 
[2] 

Perox 

Oxygen 

permeability 

across tumor 

vessel wall 

3.55×10−4 m/s for normal and 

3.55×10−4 m/s for tumor tissue 
[17] 

Aox oxygen uptake 2,200 mol∙m−3∙day−1 for normal and [2,16] 
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2,200 mol∙m−3∙day−1 for tumor tissue 

kox oxygen uptake 0.00464 mol∙m−3 [2,16] 

k1 
growth rate 

parameter 
0.3446 1/day [7] 

k2 
growth rate 

parameter 
0.0083 mol∙m−3 [16] 

pv Vascular pressure 30 mmHg [4kPa] [9] 

LplSvl 
Permeability of 

lymphatic vessels 

3.75 x10-4 [1/(Pa-s)] for normal tissue  

0 for tumor tissue 
[15] 

pl 
lymphatic vessels 

pressure 
0 [15] 

vis Water viscosity at 

310K 

7 ⋅ 10−4 Pa ⋅ s [18] 

kIn Production of 

proinflammatory 

cytokines by innate 

immune cells 

3 ⋅ 10−8 day−1 [19] 

kTE  Production of 

proinflammatory 

cytokines by 

effector CD8+ 

Tcells 

3 ⋅ 10−8 day−1 [19] 

kAPC Production of 

proinflammatory 

cytokines by 

antigen presenting 

cells 

3⋅ 10−8 day−1 [19] 

δAPC Degradation of 

antigen presenting 

cells 

0.1 day−1 [19] 

δIAPC Degradation of 

immature antigen 

presenting cells 

0.1 day−1 [19] 
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δTE  Initial degradation 

of effector CD8+ 

Tcells 

0.18 day−1 [19] 

δIn Initial degradation 

of Innate immune 

cells 

0.18 day−1 [19] 

δc Degradation of 

cytokines 

produced by 

immune cells 

1.38 day−1 [19] 

χAPC Production of 

APCs 

0.5 cm3 ⋅ g−1 [7] 

mAPCM Source of effector 

CD4+ and source 

of effector CD8+ 

(Momin et. al.) 

2.36 ⋅ 10−6 s−1 [7] 

λIn Production of NK  0.025 g ⋅ cm−3 ⋅ day−1 [7] 

λIAPC Production of 

IAPC  

0.025 g ⋅ cm−3 ⋅ day−1 [7] 

KcIn Half saturation 

concentration 

Innate cells  

9.1346 ⋅ 10−4 g ⋅ cm−3 [7] 

KcAPC Half saturation 

antigen presenting 

cells  

9.1346 ⋅ 10−4 g ⋅ cm−3 [7] 

nIn Killing rate 

constants of tumor 

cells by innate 

immune cells  

54.1857 cm3 ⋅ g−1 ⋅ day−1 [7] 

nad killing rate 

constants of tumor 

cells by adaptive 

immune cells 

108.3713 cm3 ⋅ g−1 ⋅ day−1 [7] 
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nAg
 Antigen uptake 

rate  

108.3713 cm3 ⋅ g−1 ⋅ day−1 [7] 

DIAPC Diffusion 

coefficient IAPC 

5.11 ⋅ 10−13 m2 ⋅ s−1 [20] 

DAPC Diffusion 

coefficient APC 

5.11 ⋅ 10−13 m2 ⋅ s−1 [20] 

DTE Diffusion 

coefficient CD8 

5.11 ⋅ 10−13 m2 ⋅ s−1 [20] 

DIn Diffusion 

coefficient Innate 

immune cells 

5.11 ⋅ 10−13 m2 ⋅ s−1 [20] 

DT Diffusion cancer 

cells 

5.11 ⋅ 10−13 m2 ⋅ s−1 [20] 

Dc Diffusion 

coefficient pro-

inflamatory 

cytokines by 

immune cells 

6.0472 ⋅ 10−2 cm2 ⋅ day−1 [21] 

DAg
 Diffusion 

coefficient Antigen 

6.0472 ⋅ 10−2 cm2 ⋅ day−1 [21] 

Φ Volume fraction of 

tumor accessible to 

drug 

0.3 [22,23] 

ccin Initial 

concentration of 

pro inflammatory 

cytokines 

3 ⋅ 10−11 g ⋅ cm−3 [19] 

InIn Initial 

concentration of 

Innate immune 

cells 

9 ⋅ 10−4 g ⋅ cm−3 [19] 
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T0 Initial 

concentration of 

tumor cells 

0.4 g ⋅ cm−3 [19] 

kon Binding rate 

constant 

6.87 ⋅ 103 cm3 ⋅ g−1 ⋅ day−1 [8] 

DaPDL1 Diffusion 

coefficient anti-

PDL1 

7.85 ⋅ 10−2 cm2 ⋅ day−1 [24] 

kd 
Blood circulation 

decay 
0.417 day [25] 

t0 Time of drug 

injection 

14 day This study 

σf Reflection 

coefficient 

0.13427 for tumor 

0.80829 for host tissue 

Equation 

below 

Per Vascular 

permeability 

0.13427⋅ 10−11 m ⋅ s−1 for tumor 

2.69 ⋅ 10−8 m ⋅ s−1 for host tissue 

Equation 

below 

Lp 

Hydraulic 

conductivity of 

blood vessel wall 

of normal and 

tumor tissue 

34.375x10-14 m2s/kg for normal tissue 

3.5714x10-10 m2s/kg for tumor tissue 

Equation 

below 

KT Effectiveness of 

the treatment 

1.1⋅ 10−3 g ⋅ cm−3 ⋅ day−1 This study 

 

Supplementary Table S2. Uncertainty parameters 

Parameter Description Value Reference 

μ shear modulus Range for tumor (5-50 kPa) [12–14] 

kth 
hydraulic 

conductivity 

Range for tumor ( K =
2μ(1+ν)

3(1−2ν))
 where 

Poisson ration ν= 0.4 and μ shear 

modulus) 

[14] 

Sv Vascular density Range for tumor (5000 m-1 -20000 m-1) [15] 
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k1 
growth rate 

parameter 
Range (0.1 - 0.3446 1/day) [7] 

pv Vascular pressure Range for tumor (5-50 mmHg) [9] 

Lp 

Hydraulic 

conductivity of 

blood vessel wall 

of normal and 

tumor tissue 

Range for tumor (1.56x10-9 – 7.47x10-7  

cm/Pa-s) 

Equation 

below 

 

Supplementary Table S3. Design parameters 

Parameter Description Value Reference 

𝜎𝑓  (sfT) 
Reflection 

coefficient 
In the range of (0.136 – 0.146) for tumor 

Equations 

below 

𝑃𝑒𝑟  
Vascular 

permeability 

In the range of (4.16 ⋅ 10−9 m ⋅ 𝑠−1  −

 6.225 ⋅ 10−8 ) for tumor 

Equations 

below 

KT(ΚT) 
Effectiveness of the 

treatment 

In the range of (1.1⋅ 10−4  −  1.1 ⋅

10−2  g ⋅ cm−3 ⋅ day−1) 
This study 

kon(k_on) 
Binding rate 

constant 

In the range of (1 − 1 ⋅ 106 cm3 ⋅ g−1 ⋅

day−1) 
[8] 

kd 
Blood circulation 

decay 
In the range of (0.347 – 1.076 day) [25] 

t0 
Time of drug 

injection 
In the range of (10 -14 day) This study 

 

Per is the vascular permeability of the drug, Lp the hydraulic conductivity and σf the reflection coefficient. The 

parameters Lp, Per and σf are expressed as a function of the vessel wall pores and the size of the conjugated-

cytokines [26,27] : 

Lp =
γr0

2

8μLvw
 (1) 

Per =
γHD0

Lvw
 (2) 

σf = 1 − W (3) 

where γ is the fraction of the vessel wall surface area occupied by pores, r0 the pore radius, μ the viscosity and 

Lvw the thickness of the vessel wall. H and W describe the steric and hydrodynamic interactions of the 

conjugated-cytokines with the pores of the vessel wall that hinder diffusive and convective transport 
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respectively and D0 is the diffusion coefficient of a particle in free solution given by the Stokes-

Einstein equation. By ignoring electrostatic interactions H and W become [27]: 

H =
6πF

Kt
 (4) 

W =
F(2 − F)Ks

2Kt
 (5) 

where F is the partition coefficient expressed as: 

F = (1 − λ)2 (6) 

where λ is the ratio of the conjugated-cytokines size to the vessel wall pore size and Kt and Ks are expressed 

as [27]: 

(
Kt

Ks
)  = 

9

4
π2√2(1-λ)-5/2 [1 + ∑ (

an

bn
) (1-λ)n

2

n = 1

]  + ∑ (
an + 3

bn + 3
) λ

n.

4

n = 0

 (7) 

Conclusions 
In conclusion, the DCoMEX-BIO application successfully established a sophisticated AI-assisted multiphysics 
simulation-driven optimization framework aimed at enhancing the treatment protocols of immunotherapy. 
Through the development and refinement of two distinct versions of our mathematical model—first focusing 
on a five-equation framework without immune system considerations, and subsequently expanding it to a 
comprehensive twelve-equation model incorporating the dynamics of immune agents—we have significantly 
advanced our understanding of the tumor microenvironment and the interactions influencing treatment 
outcomes. 
 
The introduction of surrogate models, including a hybrid approach that fuses computational-aided engineering 
(CAE) techniques with neural networks for time-history predictions and a dedicated neural network model for 
discrete time-point evaluations, has proven essential in managing the extensive computational demands 
associated with Bayesian updates. This innovative strategy has enabled us to accurately capture the time 
evolution of tumor volume, a critical indicator of immunotherapy efficacy, while addressing the inherent 
uncertainties in model parameterization. 
 
Furthermore, our brute-force optimization analysis of immunotherapy injection schedules has yielded valuable 
insights into the optimal timing strategies, demonstrating the framework's practical applicability in clinical 
settings. The Bayesian inference procedure effectively utilized experimental data to refine model parameters, 
enhancing the robustness and reliability of our predictions. 
 
The sources of experimental data, crucial for model validation and updates, have been meticulously described, 
ensuring transparency and reproducibility in our methodologies. Overall, the integration of advanced 
mathematical modeling, surrogate approaches, and optimization techniques within this framework offers a 
significant contribution to the field of cancer immunotherapy, paving the way for more personalized and 
effective treatment strategies tailored to individual patient needs. The outcomes of this work lay a strong 
foundation for future research endeavors, potentially guiding the clinical application of immunotherapy 
protocols in real-world settings. 
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