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Description  
 
Deliverable 2.1 illustrates the theoretical background preceding the development of the Diffusion Maps algorithm. An 
algorithmic implementation at a prototyping level is available at: 
https://github.com/mgroupntua/MSolve.MachineLearning1 
 
 

The Diffusion maps algorithm 
 
 Let 𝑼 = [𝒖𝟏, ⋯ , 𝒖𝑵] be a data set consisting of vectors 𝒖𝒊 ∈ 𝑅$, which can be seen as 𝑁 distinct realizations of an 
𝑅$-valued random variable and sampled independently with density 𝑞(𝒖). Next, assume a connectivity measure 𝐾 
between data pairs 𝒖% , 𝒖&  such as the Gaussian kernel 
 

𝐾'/𝒖𝒊, 𝒖𝒋0 = 𝑒𝑥𝑝4
−67𝒖𝒊 − 𝒖𝒋7

)
8

4𝜀 ; 

 
Next, a discrete approximation to the Laplacian 𝐿*  is constructed as follows: 
 

• Estimate the densities 𝑞* at the sample points 𝒖%  as 
 

𝑞*(𝒖%) =
1
𝑁
>𝐾*/𝒖% , 𝒖&0
+

&,-

 

• Normalize the previously defined kernel 𝐾* as 
 

𝐾*?/𝒖% , 𝒖&0 =
𝐾*/𝒖% , 𝒖&0

𝑞*(𝒖%).𝑞*/𝒖&0
. 

 
Where for α = 1 the discrete Laplacian approximates the Laplace-Beltrami operator, while α = 1/2 
approximates a diffusion operator. 

 

• Estimate the new densities 
 

𝑞*C (𝒖%) =
1
𝑁
>𝐾*?/𝒖% , 𝒖&0
+

&,-

 

 

• If we define the matrix 𝑲 = E𝐾%&F = 𝐾*?/𝒖% , 𝒖&0 and the diagonal matrix 𝑫 = [𝐷%%] = 𝑞*(𝒖%), then the discrete 
approximation of the weighted Laplacian is given by the expression: 
 

𝑳* =
𝑫/-𝑲− 𝑰𝑵

ε
 

 
 The solution to the eigenvalue problem 𝑳!𝛙 = λ𝛙 will produce the sequence of eigenvalues 0 = λ" ≥ λ# ≥ λ$ ≥	⋯ and 
right eigenvectors 𝛙% for the operator. In practice, only the first 𝑛 non-trivial eigenvectors are kept with 𝑛 obtained from the 
expression 
 

𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛&,&($ /
λ#
λ&
< 𝑡𝑜𝑙4 

 
1 The code has originally been submitted in the repo https://github.com/YiannisKalogeris/MSolve.MachineLearning 
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Then, the diffusion map operator Ψ!: 𝑢 → 𝑅&can be defined as 

 
Ψ*(𝒖) = E𝑒0!*ψ-(𝒖), 𝑒0"*ψ)(𝒖), … , 𝑒0#*ψ1(𝒖)F 

 
 
Diffusion Maps with variable-bandwidth kernels 
 
In several data-driven applications, the samples follow some distribution which is unknown a priori. It is expected that 
the samples belonging to the tails of the distribution will be fewer and, thus, there will be regions on the manifold that 
will be more sparsely delineated. To address this issue in classical kernel methods the idea of the variable-bandwidth 
(or self-tuning) kernels has been proposed and illustrated herein. The main differentiation with respect to the classical 
DMAP algorithm lies in the form of the kernel used, which in this setting becomes: 
 

𝐾*23/𝒖𝒊, 𝒖𝒋0 = 𝑒𝑥𝑝4
−67𝒖𝒊 − 𝒖𝒋7

𝟐
8

𝟒ερ(𝒖𝒊)ρ/𝒖𝒋0
; 

 
Following the construction for the graph Laplacian of the previous sections, in this case the sample densities are 
 

𝑞*23(𝒖%) =>
𝐾*/𝒖% , 𝒖&0
ρ(𝒖%)5

+

&,-

 

which are used to construct the kernel  

𝐾*,.23/𝒖% , 𝒖𝒋0 =
𝐾*23/𝒖% , 𝒖&0

𝑞*23(𝒖%).𝑞*23/𝒖&0
. 

Setting 𝑞*,.23(𝒖%) = ∑ 𝐾*,.23/𝒖% , 𝒖&0+
&,- , we can obtain the normalized kernel 

𝐾*,.23? /𝒖% , 𝒖&0 =
𝐾*,.23? /𝒖% , 𝒖&0
𝑞*,.23(𝑢%)

 

and the weighted Laplacian for this formulation becomes 

𝐿*,.23/𝒖% , 𝒖&0 =
𝐾*,.23? /𝒖% , 𝒖&0 − δ%&

ερ(𝒖%))
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Algorithmic implementation in the MSolve software 
 
The code for implementing the variable-bandwidth diffusion maps algorithm can be found in 
https://github.com/mgroupntua/MSolve.MachineLearning 2. In particular, the C# class DiffusionMapsAlgorithm.cs in 
the MGroup.MachineLearning folder implements the aforementioned procedure for an input data set. An example 
illustrating the use of this class is provided in the MGroup.MachineLearning.Tests folder, called DMAPexample.cs. 
 
In this particular example, an initial data set is considered which consists of 2000 points in 𝑅), generated from a 2-
dimensional Gaussian distribution centered at zero with covariance 𝐶 = 0.04𝐼𝟚. Using the syntax outlined below, a 
new object called DMAP from the DiffusionMapsAlgorithm class is generated, taking as input from the user a specified 
set of variables. Then the method ProcessData() applies the DMAP algorithm and computes the member variables 
DMAP.DMAPeigenvalues[⋅] and DMAP.DMAPeigenvalues[⋅]. 
 

• dataSet : the initial data set 
• numberOfKNN: number of k-nearest neighbors used in the evaluation of the kernel 𝐾*,.23/𝒖% , 𝒖𝒋0 
• numberOfKDE: number of k-nearest neighbors required to estimate the kernel parameter ε 
• differentialOperator:  1 – Laplace Beltrami operator, 2- generator of grad systems 
• numberOfEigenvectors: The number of eigenvectors requested by the user 

 
 
 
 
 
 
 
 
 
 
The data used in this particular example are shown in figure 1, while figure 2 depicts the first 10 non-trivial DMAP 
eigenvalues. 
 
 

 

Figure 1: initial data samples 

 

 
2 The code has originally been submitted in the repo https://github.com/YiannisKalogeris/MSolve.MachineLearning 

 
DiffusionMapsAlgorithm DMAP = new DiffusionMapsAlgorithm(dataSet, 
numberOfKNN, NNofKDE, differentialOperator, numberOfEigenvectors); 
 
DMAP.ProcessData(); 
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Figure 2: The first 10 diffusion map eigenvalues 


