
DCoMEX - 956201

Data driven Computational Mechanics at EXascale

Data driven Computational Mechanics at EXascale

Work program topic: EuroHPC-01-2019
Type of action: Research and Innovation Action (RIA)

Report on DMAP algorithm prototype

DELIVERABLE D2.1

Version No 1

http://www.dcomex.eu/
This project has received funding from the European High-Performance Computing Joint
Undertaking Joint Undertaking ('the JU'), under Grant Agreement No 956201

Ref. Ares(2022)550648 - 24/01/2022

DCoMEX D2.1
 Plan

2

D OC U ME N T SU MMA RY I N F ORMA T I ON

Project	Title	 Data driven Computational Mechanics at EXascale

Project	Acronym	 DCoMEX

Project No: 956201

Call Identifier: EuroHPC-01-2019

Project Start Date 01/04/2021

Related work package WP 2

Related task(s) Task 2.1

Lead Organisation NTUA

Submission date 24/01/2022

Re-submission date

Dissemination Level PU

Quality Control:

 Who Affiliation Date
Checked by internal
reviewer

George Stavroulakis NTUA 22/01/2022

 Checked by WP Leader Vissarion Papadopoulos NTUA 22/01/2022
Checked by Project
Coordinator

Vissarion Papadopoulos NTUA 22/01/2022

Document Change History:

Version Date Author (s) Affiliation Comment
1.0 22.01.2022 Ioannis Kalogeris ETHZ

DCoMEX D2.1
 Plan

Description

Deliverable 2.1 illustrates the theoretical background preceding the development of the Diffusion Maps algorithm. An
algorithmic implementation at a prototyping level is available at:
https://github.com/mgroupntua/MSolve.MachineLearning1

The Diffusion maps algorithm

 Let 𝑼 = [𝒖𝟏, ⋯ , 𝒖𝑵] be a data set consisting of vectors 𝒖𝒊 ∈ 𝑅$, which can be seen as 𝑁 distinct realizations of an
𝑅$-valued random variable and sampled independently with density 𝑞(𝒖). Next, assume a connectivity measure 𝐾
between data pairs 𝒖% , 𝒖& such as the Gaussian kernel

𝐾'/𝒖𝒊, 𝒖𝒋0 = 𝑒𝑥𝑝4
−67𝒖𝒊 − 𝒖𝒋7

)
8

4𝜀 ;

Next, a discrete approximation to the Laplacian 𝐿* is constructed as follows:

• Estimate the densities 𝑞* at the sample points 𝒖% as

𝑞*(𝒖%) =
1
𝑁
>𝐾*/𝒖% , 𝒖&0
+

&,-

• Normalize the previously defined kernel 𝐾* as

𝐾*?/𝒖% , 𝒖&0 =
𝐾*/𝒖% , 𝒖&0

𝑞*(𝒖%).𝑞*/𝒖&0
.

Where for α = 1 the discrete Laplacian approximates the Laplace-Beltrami operator, while α = 1/2
approximates a diffusion operator.

• Estimate the new densities

𝑞*C (𝒖%) =
1
𝑁
>𝐾*?/𝒖% , 𝒖&0
+

&,-

• If we define the matrix 𝑲 = E𝐾%&F = 𝐾*?/𝒖% , 𝒖&0 and the diagonal matrix 𝑫 = [𝐷%%] = 𝑞*(𝒖%), then the discrete
approximation of the weighted Laplacian is given by the expression:

𝑳* =
𝑫/-𝑲− 𝑰𝑵

ε

 The solution to the eigenvalue problem 𝑳!𝛙 = λ𝛙 will produce the sequence of eigenvalues 0 = λ" ≥ λ# ≥ λ$ ≥	⋯ and
right eigenvectors 𝛙% for the operator. In practice, only the first 𝑛 non-trivial eigenvectors are kept with 𝑛 obtained from the
expression

𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛&,&($ /
λ#
λ&
< 𝑡𝑜𝑙4

1 The code has originally been submitted in the repo https://github.com/YiannisKalogeris/MSolve.MachineLearning

DCoMEX D2.1
 Plan

Then, the diffusion map operator Ψ!: 𝑢 → 𝑅&can be defined as

Ψ*(𝒖) = E𝑒0!*ψ-(𝒖), 𝑒0"*ψ)(𝒖), … , 𝑒0#*ψ1(𝒖)F

Diffusion Maps with variable-bandwidth kernels

In several data-driven applications, the samples follow some distribution which is unknown a priori. It is expected that
the samples belonging to the tails of the distribution will be fewer and, thus, there will be regions on the manifold that
will be more sparsely delineated. To address this issue in classical kernel methods the idea of the variable-bandwidth
(or self-tuning) kernels has been proposed and illustrated herein. The main differentiation with respect to the classical
DMAP algorithm lies in the form of the kernel used, which in this setting becomes:

𝐾*23/𝒖𝒊, 𝒖𝒋0 = 𝑒𝑥𝑝4
−67𝒖𝒊 − 𝒖𝒋7

𝟐
8

𝟒ερ(𝒖𝒊)ρ/𝒖𝒋0
;

Following the construction for the graph Laplacian of the previous sections, in this case the sample densities are

𝑞*23(𝒖%) =>
𝐾*/𝒖% , 𝒖&0
ρ(𝒖%)5

+

&,-

which are used to construct the kernel

𝐾*,.23/𝒖% , 𝒖𝒋0 =
𝐾*23/𝒖% , 𝒖&0

𝑞*23(𝒖%).𝑞*23/𝒖&0
.

Setting 𝑞*,.23(𝒖%) = ∑ 𝐾*,.23/𝒖% , 𝒖&0+
&,- , we can obtain the normalized kernel

𝐾*,.23? /𝒖% , 𝒖&0 =
𝐾*,.23? /𝒖% , 𝒖&0
𝑞*,.23(𝑢%)

and the weighted Laplacian for this formulation becomes

𝐿*,.23/𝒖% , 𝒖&0 =
𝐾*,.23? /𝒖% , 𝒖&0 − δ%&

ερ(𝒖%))

DCoMEX D2.1
 Plan

Algorithmic implementation in the MSolve software

The code for implementing the variable-bandwidth diffusion maps algorithm can be found in
https://github.com/mgroupntua/MSolve.MachineLearning 2. In particular, the C# class DiffusionMapsAlgorithm.cs in
the MGroup.MachineLearning folder implements the aforementioned procedure for an input data set. An example
illustrating the use of this class is provided in the MGroup.MachineLearning.Tests folder, called DMAPexample.cs.

In this particular example, an initial data set is considered which consists of 2000 points in 𝑅), generated from a 2-
dimensional Gaussian distribution centered at zero with covariance 𝐶 = 0.04𝐼𝟚. Using the syntax outlined below, a
new object called DMAP from the DiffusionMapsAlgorithm class is generated, taking as input from the user a specified
set of variables. Then the method ProcessData() applies the DMAP algorithm and computes the member variables
DMAP.DMAPeigenvalues[⋅] and DMAP.DMAPeigenvalues[⋅].

• dataSet : the initial data set
• numberOfKNN: number of k-nearest neighbors used in the evaluation of the kernel 𝐾*,.23/𝒖% , 𝒖𝒋0
• numberOfKDE: number of k-nearest neighbors required to estimate the kernel parameter ε
• differentialOperator: 1 – Laplace Beltrami operator, 2- generator of grad systems
• numberOfEigenvectors: The number of eigenvectors requested by the user

The data used in this particular example are shown in figure 1, while figure 2 depicts the first 10 non-trivial DMAP
eigenvalues.

Figure 1: initial data samples

2 The code has originally been submitted in the repo https://github.com/YiannisKalogeris/MSolve.MachineLearning

DiffusionMapsAlgorithm DMAP = new DiffusionMapsAlgorithm(dataSet,
numberOfKNN, NNofKDE, differentialOperator, numberOfEigenvectors);

DMAP.ProcessData();

DCoMEX D2.1
 Plan

Figure 2: The first 10 diffusion map eigenvalues

