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1 Introduction

In Deliverable 7.4 (theory manual) that is associated with WWWPPP777”””AAAppppppllliiicccaaatttiiiooonnnsss””” of the DCoMEX project, a
detailed report is provided regarding the implementation of the second application. In this application an efficient
and robust framework is developed for the exploration of hyper-performance composite materials. The material
models are studied by means of a hierarchical multiscale modeling strategy. The exceptional predictive capabilities
of nonlinear computational homogenization are harnessed for the solution of the multiscale material systems. The
theoretical backround of nonlinear computational homogenization is summarized in section 2. A hierarchical
Bayesian framework that can efficiently integrate diverse data sources towards a joint inference problem is utilized
for the parametric investigation of the studied materials. An overview of the proposed hierarchical Bayesian
strategy is provided in section 3. To tackle the excessive computational requirements of such an elaborate
algorithmic procedure feed forward neural networks (FFNNs) are employed as surrogate models. Their objective
is to learn and accurately emulate the nonlinear homogenization equation that defines the material behavior across
the multiple length scales of each material. Details regarding the development of the FFNN sequence are given
in section 4. The validation of the aforementioned algorithmic machinery is done by means of a challenging
application, which is the investigation of the carbon nanotubes (CNTs) interfacial mechanical properties in
cementitious material configurations. The results of the application regarding both the offline stage of the FFNN
training and the online stage of the hierarchical Bayesian analysis are provided in section 5.

2 Nonlinear computational homogenization on multiscale material models

For an elastic macroscopic body, the equilibrium equation without body forces is defined as:

∇M ·σσσM = 000 in ΩM (2.1)

where σσσM and ΩM are the macroscopic stresses and the macroscopic domain respectively.
The material behavior of the macroscopic system is described by the constitutive form:

σσσM(t) = F
(
εεεM(τ),hhhM(τ),τ ∈ [0, t]

)
(2.2)

with εεεM and hhhM being the macroscopic strains and internal material variables. In computational homogenization
the relation in eq. (3.2) is attained from the solution of a series of boundary value problems on the representative
volume elements (RVE) of the fine scales, as shown in fig. 2.1.
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Figure 2.1: The constitutive behavior of a macroscopic system is defined through a series of finer scales
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When there is a single distinct finer scale e.g. a microscale µ , then one RVE can be assigned to describe the
“material genome” i.e. the properties of the material phases, their interaction and the morphological patterns.

The equilibrium equation in this scale is expressed as:

∇µσσσ µ = 000 in Ωµ (2.3)

where σσσ µ and Ωµ are the stresses and the domain at the microscale.
In the microscale, the constitutive relation is postulated as:

σσσ µ(t) = f
(
εεεµ(τ),hhhµ(τ),θθθ µ ,τ ∈ [0, t]

)
(2.4)

where εεεµ(τ) and hhhµ(τ) are the strains and the internal variables of the microscale. In θθθ µ are included parameters
such as material or morphological descriptors in the microscale.

The macroscopic effective material properties are obtained after solving the equilibrium imposed by eq. (2.3).
The boundary conditions applied on the RVE, such as the linear displacements on ∂ΩM used in this application,
have to be consistent with the criterion:

σσσM : δεεεM =
1

Vµ

∫
Ωµ

σσσ µ : δεεεµdΩµ (2.5)

with Vµ being the RVE volume.
The effective properties are acquired as the average value of the microscopic stress field:

σσσM =
1

Vµ

∫
Ωµ

σσσ µdΩµ (2.6)

The homogenized tangent modulus is computed through the differentiation of eq. (2.6) with the macroscopic
strains:

CCCM =
1

Vµ

∂εεεM

∫
Ωµ

σσσ µdΩµ (2.7)

It cases where the material has unique features in more distinct length scales, a further decomposition of the
material model has to be done as shown in fig. 2.1. The macroscopic homogenization operation, in this case, is
defined through the N-fold integral:

σσσM =
1

VN

∫
ΩN

. ..
1
V1

∫
Ω1

σσσ1dΩ1︸ ︷︷ ︸
σσσ2

..

︸ ︷︷ ︸
...

.

︸ ︷︷ ︸
σσσN

dΩN (2.8)

where the numbering of the scales starting from the finest one is declared by the indices {1, ...,N}. The tangent
modulus can be computed via a similar generalization as in eq. 2.8

For the solution of a macroscopic system the N-sequence of RVEs have to be solved for each integration point.
In non-linear cases, the solution scheme is completed when all scales have converged numerically. This procedure
is an extension of the well established FE2 algorithm to the case of an arbitrary number N of fine scales as a FEN

analysis.
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3 Hierarchical Bayesian framework for multiscale material modeling

Consider a set of data DDD = [DDD1, ...,DDDK ], with DDDi = [di,1, ...,di,Ni ], that encompasses measurements (i.e. mechanical
responses) obtained from a number of K independently performed experiments. These experimental scenarios
are simulated by the respective multiscale computational models M 1, ...,M K that are used to predict structural
responses mmm1, ...,mmmK in line with the experimental datasets. The parameterization of these models is done
through a distinct set θθθ

i, as θθθ
i = [θθθ i

1, ...,θθθ
i
Si
], which includes a series of physical, topological or constitutive

attributes for each length scale s = 1, ...,Si of the respective system. A subset of these parameters c
θθθ i ⊆ θθθ

i, with
c
θθθ i = [cθθθ i

1, ...,
c
θθθ i

Si
], is present in all the investigated multiscale material models.

In this application of the DCoMEX project, a novel hierarchical Bayesian computational framework is
developed based on the module 4 of the project. With this framework a robust investigation of the common model
parameters c

θθθ is done by incorporating the knowledge from all the K experimental instances. As a graphical
representation of the overall problem at hand, fig. 3.1 depicts a three-model scenario where the parameters of a
specific scale are to be investigated. The data sources have the potential to encompass a wide range of experiments
conducted across various length scales, for example, macroscale displacement measurements, mesoscale topology
characterization through Scanning Electron Microscope (SEM) images and microscale strain field extraction using
the Digital Image Correlation (DIG) technique. For the sake of brevity, the common parameters c

θθθ , will be plainly
denoted as parameters θθθ for the remainder of this report.
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Figure 3.1: Parameter identification of the common properties c
θθθ found in a series of diverse experimental cases

such as a model M 1 of a bending test on reinforced beam made of a composite material, a model M 2 of a digital
image of a composite material’s microstructure and a model M 3 of a rod specimen of the composite.

Based on the hierarchical Bayesian paradigm, each dataset DDDi obtained from a unique experimental setup
is considered separately. For each one of them, the common parameters θθθ have a distinct definition as θθθ

i. This
distinction is necessary since these parameters, albeit having the same physical meaning amongst all datasets, they
can ultimately be represented by different values due to the external variability. It is further assumed that each
θθθ

i is conditioned on a series of hyperparameters ψψψ , denoted as P(θθθ i|ψψψ). These parameters are used to provide
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in the mathematical framework the sense of affinity amongst θθθ
i for i = 1, ..,K and to explicitly account for the

model variations across the respective datasets. The hyperparameters generally represent statistical parameters of
a pre-specified family of distributions. The hierarchical Bayesian problem is formulated as:

yyyi(θθθ i|ψψψ) = mmmi(θθθ i|ψψψ)+ εεε
i i = 1, ...,K (3.1)

The directed acyclic graph (DAG) of a standard hierarchical Bayesian scheme is depicted in fig. 3.2. The joint
posterior distribution is expressed through Bayes theorem as:

P(θθθ ,ψψψ|DDD) =
P(DDD|θθθ)P(θθθ |ψψψ)P(ψψψ)

P(DDD)
=

K

∏
i=1

[ Ni

∏
j=1

[
P(di, j|θθθ i)

]
P(θθθ i|ψψψ)

]P(ψψψ)

P(DDD)
(3.2)

where P(ψψψ) is the prior distribution of the hyperparameters.
An efficient way to solve the problem described in eq. (3.2) is to decouple the total solution process, by

sequentially sampling from the marginalized posterior distributions of the physical parameters and the hierarchical
hyperparameters respectively. The data are generally sparse and there are potentially strong nonlinear phenomena
that describe the material behavior which could unpredictably alter the form of the target distributions. Therefore,
to acquire the precise expression of the posterior PDFs the Transitional Markov Chain Monte Carlo (TMCMC)
algorithm is utilized for drawing samples from both marginal distributions.

The first step is to sample from the marginal posterior distribution of the model hyperparameters, which is
postulated as:

P(ψψψ|DDD) =
∫

Ωθθθ

P(DDD|θθθ)P(θθθ |ψψψ)dθθθ
P(ψψψ)

P(DDD)
=

K

∏
i=1

[∫
Ω

θθθ i

Ni

∏
j=1

[
P(di, j|θθθ i)

]
P(θθθ i|ψψψ)dθθθ

i
]

P(ψψψ)

P(DDD)
(3.3)

where in the above equation we have used the fact that the likelihood function P(DDD|ψψψ) assumes the form:

P(DDD|ψψψ) =
K

∏
i=1

[∫
Ω

θθθ i

Ni

∏
j=1

[
P(di, j|θθθ i)

]
P(θθθ i|ψψψ)dθθθ

i
]

(3.4)

The integral of eq. (3.3) can be approximated via Monte Carlo sampling:

P(ψψψ|DDD)≃
K

∏
i=1

[
1

N
θθθ

i

N
θθθ i

∑
k=1

P(θθθ i
k|ψψψ)

]
P(ψψψ)

P(DDD)
(3.5)

To perform this integration, samples from each likelihood P(DDDi|θθθ i) associated with the model Mi, have to first
be collected. This is achieved efficiently by employing the TMCMC algorithm.

The marginal distribution of the updated multiscale model parameters θθθ
new that take into account all datasets

and can be applied in future predictions is expressed as:

P(θθθ new|DDD) =
∫

Ωψψψ

P(θθθ new|ψψψ)P(ψψψ|DDD)dψψψ (3.6)

The approximate solution of eq. (3.6) is done by generating an amount of samples for ψψψ through the empirical
distribution of P(ψψψ|DDD) obtained from eq. (3.5), as follows:

P(θθθ new|DDD)≃
Nψψψ

∑
k=1

P(θθθ new|ψψψk) (3.7)

4
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For the production of samples from eq. (3.6), the TMCMC algorithm is again used, where in this case the initial
sampling is performed on the hyperparameter prior P(ψψψ). On the contrary to sampling from P(DDDi|θθθ i), eq. (3.7)
represents a cheap-to-evaluate procedure, since no multiscale model resolutions are needed.

After the posterior probabilistic form of θθθ
new has been obtained following the hierarchical Bayesian scheme,

these parameters can then be used towards any uncertainty propagation analysis on future simulations Y new as
shown in figure 3.2. These tests could be conducted on unseen material systems that are partially described by the
inferred parameters. The quantity of interest (e.g. a structural response) yyynew is calculated as:

P(yyynew|DDD) =
∫

Ωθθθnew
P(yyynew|θθθ new)P(θθθ new|DDD)dθθθ

new (3.8)

y
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Figure 3.2: Directed Acyclic Graph (DAG) of the general hierarchical problem

4 Sequence of feed forward neural networks as surrogate models

To facilitate the proposed hierarchical Bayesian framework presented in section 3, a novel surrogate modeling
strategy is utilized for the cost mitigation of the FEN analyses in the context of computational homogenization.
The key idea is to use a sequence of FFNNs, to learn the parametrized non-linear homogenized response of the
RVEs on each scale in a hierarchical manner, starting from the finest scale and progressively substituting each
RVE with a FFNN that encapsulates the material behavior at all previous scales.

The steps for constructing the FFNN-aided N-scale nested scheme are the following:

• A sequential homogenization procedure is implemented according to eqs. (2.6) on each pair of consecutive
scales starting from the finest one, the 1st scale.

• A set of parameters/variables that define the input and output of the corresponding FFNN f NN
1 are defined

and a number of total training samples is assigned. The samples include the number n of the different RVE
solutions, while each solution further contains all the converged solution steps t of the nonlinear incremental
analysis. The input samples involve the components of the strain vectors at the upper scale {{εεε2}1:t}1:n,
while the outputs are the stress vectors {{σσσ2}1:t}1:n at the end of the homogenization procedure for each
RVE solution. If we further assume that each RVE solution is affected by a vector of parameters θθθ 1 that

5
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characterize the material’s constitutive law at the finest scale, then these parameters are also regarded as
input samples to the FFNN f NN

1 as {θθθ 1}1:n.

• During the online solution, the tangent constitutive matrix CCC2 for the tuple of the strain state and parametric
vector [εεε2,θθθ 1], required for the Newton-Raphson iterations, is effortlessly computed using Automatic
Differentiation (AD). By using differentiable activation functions in the FFNN, such as the logistic or
hyperbolic tangent function, the FFNN becomes a differentiable function. This technique allows for the
computation of the derivatives of the output σσσ2 with respect to the input εεε2 by applying the chain rule on
the FFNN and, thus, the elements c2,i j of the macroscopic tangent matrix CCC2 = [c2,i j] are obtained as:

c2,i j =
∂σ2,i j

∂hk

∂hk

∂hk−1
· · · ∂h1

∂ε2,i j
(4.1)

where hk is the output at the kth hidden layer of the FFNN for input ε2,i j.

• After the successful training and validation, the finest scale FFNN f NN
1 can be straightforwardly applied to

represent the constitutive relation of the matrix material at the next scale (scale 2). The process is iterated for
this scale and a second FFNN f NN

2 is built using [{{εεε3}1:t ,θθθ 2,θθθ 1}1:n] as input and {{σσσ3}1:t}1:n as output.
To simplify notation we write the input [{{εεε3}1:t ,θθθ 2,θθθ 1}1:n] as [{{εεε3}1:t , θ̂θθ 2}1:n], where, in the general case,
θ̂θθ s+1 = [θθθ s, · · · ,θθθ 1] is the augmented parametric vector. Again, the tangent matrix CCC3 is readily available
through AD during the online stage. It is important to note here that the FFNN f NN

2 of the second scale
also involves the material parameters θθθ 1 of the previous scale as input, since this will allow it to capture the
behavior of the material at both the first and the second scale.

• This procedure is repeated for all scales up to the macroscale M, where it ultimately results in a single final
FFNN that incorporates all the information from the lower scales and constitutes the surrogate model of the
composite material’s behavior.

To better illustrate the proposed surrogate modelling strategy a 4-scale example of a CNT-reinforced concrete
is presented herein. First, the FFNN f NN

1 is trained to substitute the RVE of the microscale, which consists of
cement paste and CNTs, using [{{εεε2}1:t , θ̂θθ 1}1:n] as input and {{σσσ2}1:t}1:n as output. Next, the FFNN f NN

2 which
represents the fine mesoscale RVE (cement mortar) is trained on pairs [{{εεε3}1:t , θ̂θθ 2}1:n] and {{σσσ3}1:t}1:n, where
now the FFNN f NN

1 is considered as the matrix material along with the fine aggregates as the inclusions. The
process is repeated one more time for the FFNN f NN

3 of the coarse mesoscale RVE, which is the final FFNN
that encapsulates all previous FFNNs and represents the constitutive relation for the macroscale problem. The
algorithmic procedure of the training is illustrated in figure 4.1.

This surrogate modeling strategy can then be applied towards the cost reduction of the multi-query analysis
imposed by the hierarchical Bayesian problem described in section 3. A unique hierarchy of FFNNs can be
developed for each investigated multiscale model Mi. By that, each likelihood function P(DDDi|θθθ i) is replaced by an
inexpensive to calculate counterpart which is denoted as PNN,i(DDDi|θθθ i). The algorithm 1 encapsulates the complete
algorithmic machinery, i.e. the offline stage of the FFNN development and the online stage of the hierarchical
Bayesian analysis, for the solution of the studied problem.

6
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Figure 4.1: Training procedure according to the proposed strategy. Staring from the microscale, a neural network,
f NN
1 is trained to emulate the stress-strain behavior of the microscale RVE. This f NN

1 is used in exchange of
the host material in the fine mesoscale and, next, f NN

2 is trained to emulate the stress-strain behavior of the fine
mesoscale RVE. The process is repeated one more time for the coarse mesoscale until the final network f NN

3
successfully encapsulates the overall composite material’s behavior.
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Input :Total training samples n, total increments t and FFNN hyperparameters. Parameterized
multiscale material models Mi(θθθ i), prior distributions P(ψψψ) and P(θθθ i). Total samples Nθθθ

i
and

TMCMC parameters ki and β i. Total samples Nψψψ and TMCMC parameters knew and β new.
Output :parameter updated distribution P(θθθ new|DDD), quantity of interest updated distribution P(yyynew|DDD)
Offline Stage:

1 for i← 1 to K do
2 for j← 1 to Si do
3 Generate and store training samples {{εεε j+1}1:t , θ̂θθ

i
j}1:n;

4 Solve the BVP of scale j;
5 Store solution stresses {{σσσ j+1}1:t}1:n;
6 Train the FFNN f NN,i

j ;
7 Store FFNN f NN,i

j ;
8 end
9 end

Online Stage:
10 for i← 1 to K do
11 Generate from PNN,i(DDDi|θθθ i) samples {θθθ i}1:Nθθθ i ← T MCMC(p(θθθ i),PNN,i(DDDi|θθθ i),Ni,ki,β i);
12 Store samples {θθθ i}1:Nθθθ i and likelihood function data PNN,i(DDDi|{θθθ i}1:Nθθθ i )

13 end
14 Estimate P(ψψψ|DDD);
15 Generate from P(ψψψ|DDD) samples {ψψψ}1:Nψψψ ← T MCMC(P(ψψψ),P(DDD|ψψψ),Nψ ,kψ ,β ψ);
16 Estimate P(θθθ new|DDD);
17 Propagate posterior uncertainty P(yyynew|DDD);
Algorithm 1: Surrogate model enhanced algorithm for multiscale material parameter inference and
uncertainty propagation

5 Numerical Application

5.1 Multiscale material models under investigation

For the validation of the framework developed for the second application of the DCoMEX WP 7, a mechanical
characterization is performed on the interfacial properties of CNTs in cementitious materials. Based on experi-
mental measurements acquired from the literature, three different multiscale material models are investigated in
the study. These include a 3-point bending test of a CNT-reinforced cement specimen, a tension test performed on
CNT-reinforced mortar rods and a 4-point bending experiment on a CNT-reinforced concrete beam. Next, the
details for each experimental case will be presented along with the multiscale model that reproduces each material
behavior.

5.1.1 CNT-reinforced cement paste experimental setup and multiscale model

The first dataset was obtained from a 3-point bending test on a fully hydrated (28 days) cement paste coupon
enhanced with a 0.3% weight fraction of CNTs. The testing beam specimen had dimensions 160mm×40mm×
40mm, while for its support two rollers, 100mm apart, were used. A single gradual point load was applied on the
center of the upper part via a third roller. The diameter of the CNTs varied between 10nm and 20nm and their
length between 10µm and 20µm. The experimental setting and the measurements that relate the flexural strain

8
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with the respective stress based on the experimental findings are depicted in fig. 5.1. To integrate the CNTs into
the FE analysis the Molecular Structural Mechanics (MSM) technique was used for their simulation. Following
the MSM method, the covalent bonds that are developed between the carbon atoms are reproduced by structural
space frame elements with tailored mechanical properties to replicate the effect of the force field constants of the
carbon-carbon bonds. To reach the desired weight fraction, a significant amount of CNTs need to be inserted into
the RVE. To this purpose the high degree-of-freedom (DOF) space frame CNT molecular models were projected
into Equivalent Beam Elements (EBE) by mapping several structural responses of the space frame to equivalent
mechanical properties of the EBE. Subsequently, a series of EBEs were positioned randomly inside the volume of
the RVE until the weight fraction requirement is achieved. A visual representation of the CNT/cement paste RVE
and the macroscopic model are given in fig. 5.2. The Drucker-Prager (DP) plasticity material law was used for the
modelling of the constitutive behavior of the cement paste matrix. The CNTs were assumed to have an elastic
behavior, while their interaction with the surrounding cement paste was modeled through a bond-slip bi-linear
constitutive law. As shown in fig. 5.3 this interfacial law is constituted of three parameters, namely the interfacial
shear strength τ

y,1
int , the elastic stiffness kel,1

int before the slippage and the inelastic stiffness kpl,1
int after the slippage.

Therefore, the parametric vector θθθ
1 is comprised by these three microscale parameters θθθ

1 =
[
τ

y,1
int ,k

el,1
int ,k

pl,1
int

]
. In

the context of the finite element analysis, to integrate the CNTs in the composite material system the cohesive
zone method was used in combination with an embedding technique.

(a) Experimental setup
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Figure 5.1: CNT-reinforced cement specimen
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Figure 5.2: CNT-reinforced cement multiscale model
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Figure 5.3: Constitutive law that defines the interaction between the CNTs and the matrix material

5.1.2 CNT-reinforced mortar experimental setup and multiscale model

The second experimental data source is a tension test conducted on a cylindrical rod made of mortar with a 0.5%
weight fraction of CNTs inserted as fillers. The specifications of the rod coupon were 500mm for the length and
30mm for the diameter. The rod was fixed at the end, while at the other one a gradually increasing tension load
was applied. In this laboratory study the CNTs had diameters between 10nm and 30nm, while the length fluctuated
between 1µm and 2µm Characteristic specimens and the tensile strain-stress dataset for the multi-walled CNT
enhanced mortar bar are provided in fig. 5.4. The finest length scale of the material, which is the cement paste
reinforced with the CNTs was formed according to the previously presented model of the cement scale as shown in
fig. 5.5. For constructing the model of the mortal scale a mesoscale RVE was developed, which includes the sand
particles inclusions that construe the mortar, an additional length scale was added. These aggregates were modeled
as spherical inclusions with varying diameters. To replicate as realistically as possible the diameter distribution
of the inclusions a Fuller grading curve was enforced. The minimum diameter of the candidate spheres were
taken as dmin = 0.1mm, while the maximum diameter as dmax = 2mm. Their positional placement was again done
randomly with a special caution that non-overlapping conditions between the inclusions are satisfied. Perfectly
elastic conditions were assigned on the inclusions. The two-scale material configuration that characterize the
macroscopic behavior and the FE macromodel used to replicate the test are illustrated in fig. 5.5. Likewise to the
previous CNT-reinforced cement material model, the material constitutive behavior is affected by the parameters
that specify the CNT/matrix interfacial behavior in fig. 5.3. According to the hierarchical Bayesian scheme
presented in section 3, these parameters assume a separate formulation for model M 2 as θθθ

2 =
[
τ

y,2
int ,k

el,2
int ,k

pl,2
int

]
.
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(a) Experimental setup
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(b) Tensile strain-stress data

Figure 5.4: CNT-reinforced mortar specimen
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Figure 5.5: CNT-reinforced mortar multiscale model

5.1.3 CNT-reinforced concrete experimental setup and multiscale model

The third dataset comes from a 4-point bending test on a concrete beam reinforced with steel rebar and further
strengthened with CNTs of 1% weight fraction. The length of the beam was 2100mm and the cross-section
150mm×250mm, while supports were used, 2000m apart, at its lower part. The CNTs had diameters of 3−15nm
and lengths of 15−330µm. For the flexural test, two gradual point loads were applied on the upper part of the
beam. The specifications of this experiment and the corresponding flexural displacement-load observations are
presented in fig. 5.6. In this scenario the material is represented by a cement, mortal and concrete three-scale
model as shown in fig. 5.7 linked hierarchically to the macroscopic FE model of the beam. The first two scales
were formulated in accordance with the procedure described in subsections 5.1.1 and 5.1.2, while the final scale
models the coarse aggregates at the mesoscale of the concrete specimen. For this simulation a Fuller grading
curve was once more applied for the generation of inclusions of various sizes inside the RVE. The minimum
and maximum diameters in this case are dmin = 2mm and dmax = 20mm respectively. The coarse aggregates were
assumed to behave linearly elastic. Again, following the hierarchical Bayesian concept, the parametric vector of
the constitutive law in fig. 5.3 that describes the interaction between the CNTs and the matrix in this model M 3 is
explicitly defined as θθθ

3 =
[
τ

y,3
int ,k

el,3
int ,k

pl,3
int

]
.
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(a) Experimental setup
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(b) Flexural Displacement-Load data

Figure 5.6: CNT-reinforced concrete specimen
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Figure 5.7: (a) CNT-reinforced concrete multiscale model (b) geometric configuration of concrete beam
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5.2 Development of the FFNN sequence for each multiscale material model

According to the strategy summarized in section 4 only one FFNN - f NN,1
1 is sufficient for the reproduction of the

macroscopic constitutive response of the first model presented in fig. 5.2. To acquire the dataset needed for the
training of f NN,1

1 , 1000 unique parametrized strain sequences with 20 incremental steps each were generated. The
selection of the lower and upper bounds for the sampling of input training space is presented in table 5.1. After the
solution of the 1000 microstructure BVPs of the RVE model of the microscale, the data pairs {{εεεM}1:20, θ̂θθ

1
1}1:1000

and {{σσσM}1:20}1:1000 were used as input and output pairs for the training and testing of f NN,1
1 . The Adam

optimizer with a learning rate of η = 0.001 and a batch size of 128 was chosen for the calibration of the f NN,1
1

parameters. The Mean Squared Error (MSE) among the directly simulated stresses {{σσσM}1:20}1:1000 and the
respective predicted stresses from f NN,1

1 was used as the loss metric. Regarding the f NN,1
1 architecture, 3 hidden

dense layers with 30 neurons and a hyperbolic tangent activation function for each one were selected. To prevent
excessive computational times, a limit of 2000 epochs was set for the training. For the training process, the data
were split in three subsets, namely the train, test and validation subset with ratios 70%, 15% and 15% respectively.
In fig. 5.8, the training progress tracks the MSE loss for each optimization iteration (epoch), while the prediction
accuracy was calculated by employing the L2 norm of each stress component in the test dataset and comparing it
to the prediction of the f NN,1

1 .

Bounds ε11
[−]

ε12
[−]

ε22
[−]

kel
int

[GPa/nm]
kpl

int
[GPa/nm]

τ
y
int

[GPa]
Lower -0.03 -0.03 -0.03 0 0 0
Upper 0.03 0.03 0.03 30 3 0.3

Table 5.1: Input sample ranges for the FFNN training
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(b) Prediction accuracy

Figure 5.8: FFNN training results for the CNT-reinforced cement specimen - Cement scale

The training process was repeated again for the second material model shown in fig. 5.5 by starting from
the microscale. In this scenario, the differences in the material properties, compared to the first model described
in sec. 5.1.1, necessitate the training to start from the formulation of the FFNN - f NN,2

1 which learns the
CNT/cement homogenized behavior. The next step is the development of the FFNN - f NN,2

2 which gives the total
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macroscopic behavior. A set of data pairs {{εεε2}1:20, θ̂θθ
2
1}1:1000 and {{σσσ2}1:20}1:1000 were initially obtained by 1000

CNT/cement RVE solutions. These were then used for the training and testing of f NN,2
1 , which was subsequently

used as the matrix material of the CNT/mortar scale. The next step was to gather data {{εεεM}1:20, θ̂θθ
2
2}1:1000 and

{{σσσM}1:20}1:1000 via 1000 solutions of the CNT/mortar RVE and then used them to train and test f NN,2
2 . For

both f NN,2
1 and f NN,2

2 the same choices as the previous model were made regarding the FFNN architecture, the
preprocessing and the training hyperparameters. The accuracy of both FFNNs is captured in figs. 5.9 and 5.10,
where the progression of the MSE metric during the training and the quality of the predictions are visualised,
respectively.
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Figure 5.9: FFNN training results for the CNT-reinforced mortar specimen - Cement scale
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Figure 5.10: FFNN training results for the CNT-reinforced mortar specimen - Mortar scale

For the final model of the CNT/concrete beam specimen in fig. 5.7, a sequence of three FFNNs, namely
the f NN,3

1 , the f NN,3
2 and the f NN,3

3 were constructed. Following the same concept as in the previous models, the
procedure was initialized from the finest scale, which is the CNT/cement scale, by solving the BVP imposed by the
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homogenization equation for 1000 different strain sequence/parameter cases {{εεε2}1:20, θ̂θθ
3
1}1:1000 and retrieving

the respective stress outputs {{σσσ2}1:20}1:1000. With these data we were able to train and test the first FFNN - f NN,3
1

which was then used towards the realization of the CNT/mortar data i.e. {{εεε3}1:20, θ̂θθ
3
2}1:1000 and {{σσσ3}1:20}1:1000.

After training and testing the second FFNN - f NN,3
2 through the utilization of the CNT/mortar dataset, the last step

was to generate the CNT/concrete data pairs {{εεεM}1:20, θ̂θθ
3
3}1:1000 and {{σσσM}1:20}1:1000 and use them to train and

test the third FFNN - f NN,3
3 . All the choices regarding the formulation and training aspects of the FFNNs were

made likewise to the two previous models. The results concerning the training process and the prediction accuracy
based on the stress L2 norms are given in figs. 5.11, 5.12 and 5.13 for the three scales respectively.
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Figure 5.11: FFNN training results for the CNT-reinforced concrete specimen - Cement scale
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Figure 5.12: FFNN training results for the CNT-reinforced concrete specimen - Mortar scale
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Figure 5.13: FFNN training results for the CNT-reinforced concrete specimen - Concrete scale

5.3 Parameter identification of the CNT-cement paste interfacial properties

After the parametrized constitutive response of the three investigated models has been learned by the FFNN
surrogates, we are ready to move to the online procedure of the proposed hierarchical Bayesian strategy as
presented in algorithm 1. The data via which the investigated parameters will be updated were obtained from the
figures 5.1b, 5.4b and 5.6b for the three models respectively. From each of the three curves, five equally spaced
points were retrieved and used towards the uncertainty quantification as shown in the aforementioned figures. The
initial step was to perform an independent TMCMC sampling from the likelihood function P(DDDi|θθθ i) of each model
M i, i = 1,2,3. Since the solution process at this stage is decoupled, the posterior sampling for all models was
enforced in a computationally parallel manner. This is an important feature as it partially counters the drawback of
the MCMC algorithms which are serial by default and enables the option to employ a high number of models in
the hierarchical Bayesian framework. The prior distributions P(θθθ i) were chosen as uniform distributions with
their upper and lower bounds selected based on the parameter training bounds of the FFNNs. Therefore, for each
model the priors were defined as P(kel,i

int )∼U (0,30), P(kpl,i
int )∼U (0,3) and P(ty,i

int)∼U (0,0.3). The standard
deviation of the error was calculated based on a coefficient of variation of 0.02. For the hyperparameters of the
TMCMC algorithm, the values ki = 1.0 and β i = 0.2 were selected, while the number of the samples was chosen
as Ni = 10000. The posterior form of each θθθ

i is illustrated in figs. 5.14, 5.15 and 5.16.
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Figure 5.14: Results of the Bayesian analysis on the CNT/cement interfacial parameters of model M 1. Diagonal
- Marginal probability density functions of the investigated parameters. Upper triangle - Scatter plots for each
parameter pair. Lower triangle - Joint probability density functions for each parameter pair

Figure 5.15: Results of the Bayesian analysis on the CNT/mortar interfacial parameters of model M 2. Diagonal
- Marginal probability density functions of the investigated parameters. Upper triangle - Scatter plots for each
parameter pair. Lower triangle - Joint probability density functions for each parameter pair
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Figure 5.16: Results of the Bayesian analysis on the CNT/concrete interfacial parameters of model M 3. Diagonal
- Marginal probability density functions of the investigated parameters. Upper triangle - Scatter plots for each
parameter pair. Lower triangle - Joint probability density functions for each parameter pair

After all the necessary samples {θθθ i}1:Nθ i have been collected, the next step is to formulate the hyperparameter
posterior PDF as postulated in eq. (2.7). Again, following the process of algorithm ?? we used the TMCMC
to sample from the empirical distribution P(ψψψ|DDD). The selection of the hyperparameter priors P(ψψψ) and the
parameter priors P(θθθ i|ψψψ) is given in table 5.2. At this stage, the TMCMC ran for Nψ=50000 samples and the
hyperparameters were again appointed as knew = 1.0 and β new = 0.2. The hyperparameter posterior PDFs are
given in fig. 5.17. The last step of algorithm 1 is to construct the probabilistic form of the new parameters θθθ

new by
utilizing the posterior samples {ψψψ}1:Nψ . Since each sample in {ψψψ}1:Nψ defines a uniform distribution with certain
bounds, a discrete mixture distribution could be formed by considering all these uniform PDFs P(θθθ new|{ψψψ}1:Nψ ).
By doing so, eq. (??) is expressed as:

P(θθθ new|DDD) =
Nψψψ

∑
i=1

wiU ({ψψψ1}i,{ψψψ1}i +{ψψψ2}i) , with wi =
1

Nψ
, i = 1, ...,Nψ (5.1)

Sampling from such an empirical mixture PDF was straightforward. The resulting distributions P(θθθ new|DDD) are
presented in fig. 5.18.

18



DCoMEX Deliverable 7.4(theory manual)

Hyperparameter ψ1
kel

int
ψ2

kel
int

ψ1
kpl

int
ψ2

kpl
int

ψ1
τ

y
int

ψ2
τ

y
int

Prior PDF U (0,20) U (0,10) U (0,2) U (0,1) U (0,0.2) U (0,0.1)
Parameter (i=1,2,3) kel,i

int kpl,i
int τ

y,i
int

Prior PDF U (ψ1
kel

int
,ψ1

kel
int
+ψ2

kel
int
) U (ψ1

kpl
int
,ψ1

kpl
int
+ψ2

kpl
int
) U (ψ1

τ
y
int
,ψ1

τ
y
int
+ψ2

τ
y
int
)

Table 5.2: Prior distributions of the hyperparameters and the parameters of the tackled hierarchical Bayesian
problem

Figure 5.17: Results of the hierarchical Bayesian analysis on the hyperparameters. Diagonal - Marginal probability
density functions of the hyperparameters. Upper triangle - Scatter plots for each hyperparameter pair. Lower
triangle - Joint probability density functions for each hyperparameter pair
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Figure 5.18: Results the of hierarchical Bayesian analysis on the newly formulated CNT/matrix interfacial
parameters. Diagonal - Marginal probability density functions of the new parameters. Upper triangle - Scatter
plots for each new parameter pair. Lower triangle - Joint probability density functions for each new parameter pair

Finally, we performed an uncertainty propagation analysis on how the informed parameters θθθ
new = [kel,new

int

,kpl,new
int , ty,new

int ] impact the mechanical behavior of the respective material for each model M i,w i = 1,2,3. For
that, we investigated the influence of the CNT/matrix cohesive properties θθθ

new on the macroscopic elastic stiffness
matrix CCCi

M . A standard Monte Carlo analysis was conducted on the full material composition of each model, which
is described by the single scale model of fig. 5.2 for the CNT/cement specimen, the two-scale model of fig. 5.5 for
the CNT/mortar specimen and the three-scale model of fig. 5.7 for the CNT/concrete specimen. The objective is
to find the distributions for the axial and shear components of the stiffness tensor. To ensure that the plasticity
conditions are not met, we applied a relatively small strain value and subsequently solved the homogenization
problem. The inexpensive emulators in the form of the FFNNs enabled us to perform these analyses in negligible
computational time since the homogenized strain-stress relation can be instantly extracted from each FFNN, while
the constitutive matrix can then be easily obtained using Automatic Differentiation. The material in all cases
is isotropic due the random orientation of the CNTs, therefore both the axial and shear stiffness is identical in
all directions. The components (C/C0)axial and (C/C0)shear of the elasticity tensor, where C0 is the respective
stiffness value of the plain material, are presented in fig. 5.19. On average, the stiffness ratio for both axial
and shear components is higher in model M 1, while the lowest ratio is observed in model M 3. The results are
consistent with the expected outcome, since compared to the cement model M 1 the addition of fine aggregates in
model M 2 and fine and coarse aggregates in model M 2 leads to stiffer materials and reduces the impact of the
CNT reinforcement on that aspect.
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(a) Cement material of M 1 (b) Mortar material of M 2

(c) Concrete material of M 3

Figure 5.19: Posterior distribution of the stiffness improvement due to the CNT reinforcement in the axial and shear
components for each material model by considering the informed PDF P(θθθ new|DDD) of the interfacial parameters.
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