
DCoMEX - 956201

Data driven Computational Mechanics at EXascale

Data driven Computational Mechanics at EXascale

Work program topic: EuroHPC-01-2019
Type of action: Research and Innovation Action (RIA)

REPORT ON THE DCoMEX-MAT APPLICATION

DELIVERABLE D7.3 (software module)

Version No 1

http://www.dcomex.eu/
This project has received funding from the European High-Performance Computing Joint
Undertaking Joint Undertaking ('the JU'), under Grant Agreement No 956201

Ref. Ares(2024)1228615 - 18/02/2024

http://www.dcomex.eu/

DCoMEX Deliverable 7.3(software module)

 Plan

2

D OC U ME N T SU MMA RY I N F ORMA T I ON

Project Title Data driven Computational Mechanics at EXascale

Project Acronym DCoMEX

Project No: 956201

Call Identifier: EuroHPC-01-2019

Project Start Date 01/04/2021

Related work package WP 7

Related task(s) Task 7.2

Lead Organisation UCY

Submission date 18/02/2021

Re-submission date

Dissemination Level PU

Quality Control:

 Who Affiliation Date

Checked by internal
reviewer

George Stavroulakis NTUA 15/02/2024

 Checked by WP Leader T. Stylianopoulos UCY 15/02/2024

Checked by Project
Coordinator

Vissarion Papadopoulos NTUA 15/02/2024

Document Change History:

Version Date Author (s) Affiliation Comment

DCoMEX Deliverable 7.3(software module)

 Plan

Contents
1. Description .. 4

2. Algorithmic Implementation ... 5

DCoMEX Deliverable 7.3(software module)

 Plan

1. Description

In DELIVERABLE 7.3 (software module) that is associated with WP2 “Surrogate modelling”of the DCoMEX project,

a report is provided regarding the software implementations done in MSolve for the second application (DCoMEX-MAT)

of the DCoMEX project (for a detailed description of the theoretical aspect of this application see the supplementary report

in DELIVERABLE D7.4 (theory manual)).

The development of the algorithmic procedure in MSolve for the second application consists of 2 independent parts inside

the MSolve environment:

The first part includes the data collection for the training of the feed forward neural networks (FFNNs). For that, an amount

of finite element boundary value problems has to be solved for different representative volume elements (RVEs) of various

length scales (e.g. a CNT-reinforced cement paste, a CNT-reinforced mortar, a CNT-reinforced concrete). After the finite

element solutions, the data can be stored and used at a future time as training samples in any machine learning framework.

The second part involves the FFNN training with the gathered data samples. An external machine learning library, based on

Python’s TensorFlow, is utilized by integrating it in MSolve with the proper customization. For the training, the architecture

of the FFNN and other hyperparameters can be freely chosen. The trained FFNNs can then be used as material models for

future FEM analyses. To do that, a tailored constitutive law is developed which can predict stress responses and tangent

moduli based on the FFNN predictions for given strains.

All code can be found in https://github.com/mgroupntua/Constitutive, specifically in the repository that is named

MGroup.Constitutive.Structural.MachineLearning

https://github.com/mgroupntua/Constitutive

DCoMEX Deliverable 7.3(software module)

 Plan

2. Algorithmic implementation in the MSolve software

To be able to develop FFNNs in MSolve the FeedForwardNeuralNetwork class has been developed, based on the
Tensorflow library, and is located in:
https://github.com/mgroupntua/MachineLearning/tree/develop/src/MGroup.MachineLearning.TensorFlow/N
euralNetworks

NeuralNetworkMaterial3D Constructor

NeuralNetworkMaterial3D Methods

FeedForwardNeuralNetwork(normalizationX, normalizationY, optimizer, lossFunc,
neuralNetworkLayer, epochs, batchSize, seed, classification)

normalizationX: type of normalization used in the input data

normalizationY: type of normalization used in the output data

lossFunc: type of loss function

neuralNetworkLayer: list of layers of specific neuron size and activation function

epochs: total iterations of a forward and backward pass through the FFNN during training

batchSize: number of samples in one forward and backward pass through the FFNN during
training

seed: seed of the pseudo-random number generator

classification: Boolean option for either a regression or classification problem
(default=false)

Train(stimuli, responses)

stimuli: training input data

responses: training output data

method objective: trains the FFNN with the provided input and output data

EvaluateResponses(stimuli)

stimuli: input data

method objective: provides the prediction of the output of the trained FFNN for specific
input data

https://github.com/mgroupntua/MachineLearning/tree/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks
https://github.com/mgroupntua/MachineLearning/tree/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks

DCoMEX Deliverable 7.3(software module)

 Plan

A special constitutive law has been created which reads a pre-trained FFNN and then can predict stress vector responses
and tangent constitutive matrices based on the FFNN predictions.

NeuralNetworkMaterial3D Constructor

NeuralNetworkMaterial3D Methods

NeuralNetworkMaterial3D(neuralNetwork, materialParameters)

neuralNetwork: pre-trained FFNN on specific strain/parameter input states and stress
output states

materialParameters: material parameters according to which the FFNN has be trained
(optional)

GetConstitutiveMatrix()

method objective: calculates the tangent constitutive matrix for the current total strain
by using the pre-trained FFNN

CalculateNextStressStrainPoint()

method objective: calculates the total stress vector for the current total strain by using
the pre-trained FFNN

UpdateConsitutiveMatrixAndEvaluteResponse(strainsIncrement)

strainsIncrement: the incremental strain vector on a specific gauss point for a specific
step of the iterative analysis

method objective: updates the local variables of the NeuralNetworkMaterial3D object

EvaluateResponseGradients(stimuli)

stimuli: input data

method objective: provides the prediction of the gradient of the output with respect to
the input of the trained FFNN for specific input data

DCoMEX Deliverable 7.3(software module)

 Plan

The main algorithmic procedure takes place in the class called NeuralNetworkMaterialBuilder. This class includes both

steps required for the development of the hierarchy of the FFNNs, namely the solution of the boundary value problems

imposed by each scale RVEs for the data collection, and the training of the FFNNs with the collected data after choosing

their parametrization. These steps can be performed independently by two methods inside NeuralNetworkMaterialBuilder.

NeuralNetworkMaterialBuilder Methods

GenerateStrainStressData()

method objective: this is the main script for the solution of the finite element problems
as described by the RVEs and the subsequent data collection. In this script the user has
the option to select the type of the RVE for the analysis (i.e. the different phases of the
microstructure, the material of each phase, the morphological structure). Additionally, the
strain sampling ranges and the sampling distributions can be chosen, which eventually affects
the random sampling during the RVE problem solutions. The user assigns the total desired
number of input-output pairs. Until the total number of RVE solutions is reached, after each
solution, the strain input - stress output data are stored in a user specified path in the
system environment. These data can be used for the training of any machine learning algorithm
either in MSolve or in any other external software (e.g. Python).

TrainNeuralNetwork()

method objective: this is the main script for the training of the FFNN with already collected
training data. In this script the user has the option to select FFNN parameters such as the
number of hidden layers, the neurons for each hidden layer, the activation function for each
hidden layer, the optimization algorithm, the loss function, the epochs and batches. The
data are loaded from the user specified path in the system environment which were previously
stored. The FFNN is trained by employing the FeedForwardNeuralNetwork class, and then again,
in a user specified path three files are saved, namely the netPathFile(contains information
about the architecture of the FFNN), the weightsPathFile(contains information about the
trained weights and biases of the FFNN) and the normalizationPathFile(contains information
about the type of normalization used during the training process). These files can then be
loaded at the initialization of an object of a NeuralNetworkMaterial3D class during a FEM
analysis.

