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1.  Description 

 

This report outlines the capabilities, design, and implementation of the UQ-aware 

image processing module, including its functional requirements, existing 

technology leverage, modular framework, uncertainty quantification, and 

visualization tools, concluding with information on software availability. These 

software modules facilitate geometry reconstruction from 3D images and 

incorporate algorithms to handle uncertainties in image segmentation and 

boundary conditions, ultimately aiding downstream modeling in the DCoMEX 

framework. 
 

This report also serves the purpose of documenting and demonstrating the use of 

the DCoMEX UQ-aware image segmentation software initially described in 

deliverables D5.1, D5.2, and D5.3. We will do so by using data, processing tasks, 

and specialized algorithms and mathematical models originating from the 

DCoMEX-BIO use case. 

 

1.1 Functional and Technical Requirements for UQ-Aware Image 
Processing in DCoMEX 

 

The UQ-aware image processing module aims to translate 3D image scans into 

well-defined spatial domains suitable for downstream modeling. During the 

course of the project, and driven by the DCoMEX usecase – and, in particular, 

the DCoMEX-Bio usecase on tumor growth modeling –  we identified a number 

of functionalities the DCoMEX image processing need to enable:  
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1. Segmentation Algorithms: These algorithms define and delineate the 

modeling domain visible from images, creating subvolumes with task-specific 

boundary conditions. Nodes of these meshes may contain local properties. 

 

2. Local Model Parameters (e.g., Material Properties) and Boundary 

Conditions: Nodes on the mesh or grid can be identified with local material 

properties relevant to the modeling, derived from the spatial context in the 

image domain. Similarly, image segments can be identified with relevant 

boundaries and boundary conditions for the modeling domain.  

 

3. Representing Uncertainties for Uncertainty Quantification: The 

nodes/grids representing the modeling domain should express spatial 

uncertainties from image delineations, including uncertainties in local 

material properties. 

 

4. Enabling expert-guided Interaction with Image Data: For applications 

requiring manual processing, tools should enable highly interactive image 

segmentations adaptable to new 3D image data. In the same way, a 

visualization of intermediate and final examples should be enabled by the 

DCoMEX tools. 

 

5. Automated Processing: For applications with well-defined domains and pre-

developed segmentation tools, these tools should integrate seamlessly, scaling 

efficiently to handle large datasets and to prepare them for large-scale 

computing tasks in MSolve. 
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2.   Implementation of the DCoMEX UQ-Aware Image 

Processing Software 

 

2.1.  Design, Implementation, and Availability 

 

The DCoMEX image processing tool employs a modular framework with well-

defined interfaces to integrate the above tools. This modularity allows for 

customizable and scalable image processing workflows, including segmentation, 

meshing, and uncertainty quantification. The tool enables both pre- and post-

processing capabilities, as listed in 1.2. 

 

2.1.1. Modular data processing software architecture 
 

A modular framework enables a mapping of functionalities to (image processing) 

functions, enabling a straightforward of individual tools, as well as, a pipeline set 

of processing tools. Modules and functions of the framework include: 
 

1. Workspace Manager: Organizes data into workspaces, allowing easy storage 

and retrieval. 

2. Viewers: Provides tools for 2D/3D data visualization and manipulation, 

including an in_built viewer and interfaces to other community visualization 

tools.  

3. Processing: Supports plugins for various pre- and post-processing tasks. It is 

enabling integration with external image pre-processing tools, like ITK-SNAP 

and Ilastik, but also the DCoMEX-Bio “brats” and “tumor_growth” 

algorithms. It is also enabling the generation of summary statistics for post-

processing tasks. 

4. Pipelines: Users can create pipelines combining multiple plugins to automate 

processing tasks. 
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Figure 1: Modular architecture of the DCOMEX UQ-aware Image Processing Tool, offering 

interfaces to image import, visualization, interactive processing, and MSolve-specific meshing. 

Serving as data processing pipeline. 

 

2.2.2 Integration with other community tools 

 

The modular design of the DCoMEX image processing module leverages several 

established open-source software projects. This enriches its functionality and 

guarantees the further availability – and development - of relevant software 

functions of the toolbox via dedicated open-source software initiations.  

 

1. ITK and VTK: These toolkits provide extensive functionality for 2D, 3D, and 

4D data handling, visualization, and processing in the biomedical domain. 
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2. ITK-snap: A tool for multimodal 3D image annotation, offering semi-

automatic segmentation and image navigation. 

3. Ilastik: A user-friendly tool for ML-guided adaptive image segmentation, that 

is popular in bioimaging. 

4. BRATS-Toolkit: Specifically for DCoMEX-Bio and brain tumor image 

segmentation, this tool offers comprehensive preprocessing, segmentation, 

and fusion capabilities. 

 

2.2.3 Visualization and interaction 

 

The DCoMEX tool also includes modules to visualize simulation outputs, 

particularly those affected by uncertainties in boundary conditions and model 

parameters.  
 

The visualization module provides summary statistics like averages and standard 

deviations for simulation results. It integrates with other visualization tools in the 

DCoMEX pipeline and supports standard file formats for compatibility with 

specialized software like 3D Slicer and Napari. 

 

2.2.4 Availability and licensing of the code 

 

Key elements of the DCoMEX UQ aware image processing framework are 

written in Python to enable full integration with other computational tools and, at 

the same time, to enable users to modify and adjust the given to their specific 

needs. In addition, all tools are available as command line functions (to be used 

in Linux or Windows WLS), together with appropriate installation scripts to 

broaden the user base.  
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Module and its components are available as open-source software on GitHub via 

https://github.com/DComEX. 

 

3. Dedicated Functions for UQ-Aware Data Handling in 

DCoMEX  

 

3.1  UQ-Aware Preparation of Simulation Input 
 

Using real world image data requires the user to abstract the representation of the 

problem under study, i.e., defining about boundaries or the localization of local 

material properties that impact on the simulation model. In many applications that 

aim at propagating uncertainties of the simulation and modeling task, however, a 

probabilistic representation is preferred over the abstracted one. The DCoMEX 

UQ-aware image processing tool offers functionalities and related representations 

to deal with these types of uncertainties:    
 

1. Probabilistic Segmentations: Plugins like Ilastik and ITK-SNAP can 

generate probabilistic outputs, assigning class probabilities to pixels/voxels, 

which are then formatted for downstream MSolve simulation by using the 

ensemble approach proposed by [Krygier].  
 

2. Node Probabilities and Ensembles: Uncertainties about local material 

properties can be represented as probabilities at mesh nodes or as ensembles 

of meshes sampling from probabilistic domains. For example, in the 

DCoMEX-Bio use case, tissue properties are associated with probabilities at 

the nodes of a structured grid. In this example, the downstream simulation 

models take continuous probabilistic values as input to the patient-specific 

prediction of tumor growth. 
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Figure 2. An example of probabilistic tissue segmentation (Cerebrospinal fluid (CSF), White 

matter (WM), Grey matter (GM)) and corresponding MRI T1c scan. The probabilistic 

segmentations offer information on the expected tissues underneath and nearby the tumor 

(from [Ezhov]). 

 

3.2 Dealing with Simulation Output from UQ-Aware Simulations 
 

In addition to uncertainties associated with boundary conditions, there may be 

uncertainties related to parameters of the simulation algorithm. For example, an 

exchange rate in a dynamical process may only be know up to a certain range or 

distribution. As a result, different simulation results are equally likely. In another 

example, parameters of a differential equation may be estimated from a set of 

(image) observations via Bayesian inference. Same as before, they may only be 

known only up to a distribution.  
 

In both cases, the output of the forward simulations is likely to be represented in 

an ensemble of simulation output, for example, via Markov chain Monte Carlo 

and other importance sampling approaches. Other inference algorithms may 

directly generate summary statistics like means or variances. If they do so at the 

level of the node in the simulation domain, the resulting uncertainties need to be 

visualized and inspected in the original domains of the input data. This 
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functionality for visualizing local output of UQ-aware simulations is supported 

in the data processing tool.  
 

More specifically, the tool is capable of dealing with both local and global 

uncertainties:  
 

 

1. Local Uncertainties: Uncertainties in boundary conditions translate into local 

uncertainties in simulation results, requiring visualization of probabilistic 

segmentations and resulting simulation outputs. Dealing with ensembles of 

simulations is a direct consequence of the functionalities of the DCoMEX UQ-

aware processing tools described above in Section 3.1. 
 

2. Global Uncertainties: Uncertainties in global simulation parameters lead to 

voxel-wise distributions, necessitating visualization tools to summarize and 

display these uncertainties within the original image domain. These ensembles 

of (weighted) simulations results, for example, from Bayesian sampling 

algorithms like Korali (Fig. 3). Both summaries of discrete simulation output 

can be visualized, as well as summaries generated by the algorithm itself, like 

maximum a posteriori values, or standard deviations of state variables (e.g., 

see Fig. 3).  

 

An example of summary statistics arising from global parametric uncertainty is 

given in Fig. 3. 

 

4.  The DCoMEX-Bio Usecase 

 

The DCoMEX-Bio Usecase on tumor image analysis and patient-specific 

simulation of tumor growth has been a prominent driver project for conceiving   
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Figure 3. Visualization of simulated tumor in a patient anatomy. The modeling uncertainty 

results in probabilistic estimated of the tumor cell distribution: MAP, Mean, and std represent 

the maximum-a-posterior, mean and standar deviation of the distribution, respectively (from 

[Lipkova])  

 

the design and implementing the DCoMEX UQ-aware image processing 

software. To enable the usecase, dedicated routines for preprocessing brain 

images have been implemented, several tumor growth simulation models in 

MSolve, as well as a Corali-based estimation of personalized model parameters, 

and a visualization of final simulations within the brain image geometry. 

 

4.1  Pre-processing of Tumor Image Data 
 

Preprocessing brain tumor image data for modeling tumor growth requires two 

interlinked image segmentation tasks: First, different magnetic resonance images 

– and, possibly, other image modalities – need to be standardize and aligned with 

a spatial template domain. Second, anatomical structures of interest need to be 

localized and segmented, as well as tumor structures and -substructures. 
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Following the commonly used Fisher-Kolmogorov model with anisotropic 

growth conditions [Lipkova, Ezhov, Balcerak], the anatomy defines patient-

specific spatial boundary conditions in the subsequent tumor growth simulation, 

and outlines of  the various tumor substructures represent targets in the 

subsequent model personalization, i.e., need to be matched by the simulation 

output.  

 

4.1.1 Interactive ITK-snap and Ilastik segmentation.  
 

Images can be aligned with tissue templates, also referred to as 3D anatomical 

“atlases”, and resampled to standard resolution across all image modalities in 

various commercial and non-commercial medical image processing tools (such 

as 3D Slicer1). Upon co-alignment, they can be further processed with generic 

tools in the DCoMEX UQ-aware image processing software: Starting with the 

co-aligned atlases, the patient anatomy can be inspected and refined, if necessary, 

in an interactive fashion using, e.g., level set based label propagation algorithms 

from ITK-snap2, or a ML-based segmentation using Ilastik3.  
 

Subsequently, the tumor can be segmented: ITK-snap, for example, has been the 

standard tool for interactive tumor image segmentation and an interactive 

segmentation by an expert can follow the annotation procedure established for 

the ”Multimodal Brain Tumor Image Segmentation Challenge (BRATS)” 

[Menze]. Alternatively, a segmentation algorithm for delineating the 3D 

structures can be trained using Ilastik. Early on in the BRATS challenge, an 

Ilastik based segmentation using random forests and 3D local image features has 

won the BRATS benchmark [Menze]. It’s advantage over the interactive ITK-

 
1 www.slicer.ort 
2 www.itksnap.org 
3 www.ilastik.org 
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snap based segmentation is its ability to train on few examples (few annotated 

exemplary voxels, or few exemplary cases), and then the trained machine learning 

model can be applied to the remaining data, for example, by implementing an 

automated pipeline in the DCoMEX UQ-aware image processing tool. 

 

    

Figure 4: The tumor image data processing as implemented in the “brats” processing modules 

dealing with image registration (top row), masking (second row), and brain segmentation 

(third and fourth row). Functions are implemented in [Kofler]. Also see Fig 1 for tissue 

segmentation output. 
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4.1.2 Dedicated BRATS processing pipeline 
 

Both ITK-snap and Ilastik based brain tumor image processing require expert 

knowledge, time, and prior data preparation. To this end, a dedicated module has 

been implemented that makes use of (a) established protocol for image processing 

for the BRATS benchmark including co-alignment and tissue segmentation via 

atlas alignment (Fig x, top), and (b) that enables the deployment of state-of-the-

art 3rd party tumor image segmentation algorithms as made available in the 

BRATS benchmark (Fig x, bottom). Different algorithms can be chosen, 

including winning deep learning algorithms of the past years.   
 

This set of algorithms is implemented as processing modules (Fig. 1) named 

“brats_preprocessing” for image alignment and resampling, “brats_tissue” for an 

atlas-based tissue segmentations, and “brats_segmentation” for the tumor 

segmentation.  

 

4.2 Simulating Tumor Growth and Estimating Patient-Specific Model 

Parameters 
 

The aforementioned Fisher-Kolmogorov partial differential equation is the 

classical tumor simulation model. It describes tumor growth as a reactive flow in 

porous medical, with the tumor proliferation being described as logistic growth 

and migration of tumor cells being modeled as a diffusive random walk. Its two 

key parameters are the diffusion constant and the growth constant. As mentioned, 

the consideration of anatomical boundary conditions – modifying the local tumor 

cell diffusion constant - is crucial for modeling it in a patient-specific 

personalization. We implemented this model in MSolve, also serving as a 

baseline for the more involved mathematical models for response to tumor 
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immunotherapy. We also implemented a model that is conditioning cell 

proliferation on local nutrient availability that, itself, is modeled as a diffusive 

process. In this model, the absence of nutrients leads to the rise of a second tumor 

mixture, i.e., necrotic cells.  Fig. 5 shows simulations of this model adjusted to 

anatomy and tumor structure and image markers of an exemplary patient. 
 

The DCoMEX preprocessing and modeling pipeline has been tested on a set of 

about 200 patients from TUM University Hospital [Balcerak]. The baseline 

models implemented in MSolve have been used, and different personalization 

strategies have been compared.  

                 

Figure 5: Tumor growth model with migrating, proliferating and necrotic cells 

making use of the “brats” image processing modules and implemented in 

MSolve. Shown are estimate tumor cell distributions. 
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Figure 6: A pipeline of the DCoMEX-BIo usecase: a). The medical imaging scans (such as 

MRI and PET) are processed using the DCoMEX brat_preprocessor tool, b) The obtained 

tissue and tumor segmentation by means of the brat_tissue and brat_segmentation serve as 

input to the tumor growth models, c) The simulated tumor cell distribution can then be 

visualized using DCoMEX viewer plugin. 

 

4.3  Post-Processing of Simulation Data and Visualization 
 

Results returned from the MSolve simulation can be further processed and 

visualized in the original domain of the patient anatomy. This includes the joint 

visualization with the original image data (Fig 6a), as well as with the 

segmentations (Figs 2, 6b). The visualization of the estimated tumor cell 

concentrations (Fig. 6c) can be displayed as averages or other via other summary 

statistics. 
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