
DCoMEX - 956201

Data driven Computational Mechanics at EXascale

Data driven Computational Mechanics at EXascale

Work program topic: EuroHPC-01-2019
Type of action: Research and Innovation Action (RIA)

Report:
Incremental versions of Korali, improving on performance, features, and documentation

DELIVERABLE D4.4

Version No 1

https://www.dcomex.eu
This project has received funding from the European High-Performance Computing
Joint Undertaking (’the JU’), under Grant Agreement No 956201

Ref. Ares(2023)8550099 - 13/12/2023

DCoMEX Research Report

DOCUMENTATION SUMMARY INFORMATION

Project Title Data driven Computational Mechanics at EXascale

Project Acronym DCoMEX

Project No 956201

Call Identifier EuroHPC-01-2019

Project Start Date 01.04.2021

Related work package WP 4

Related task(s) Task 4.4

Lead Organisation ETHZ

Submission date 25.11.2023

Re-submission date

Dissemination Level PU

Quality Control:

Who Affiliation Date

Checked by internal reviewer Petros Koumoutsakos 07.12.2023

Checked by WP Leader Eleni Chatzi ETHZ 09.12.2023

Checked by Project Coordinator Vissarion Papadopoulos NTUA

Document Change History:

Version Date Author(s) Affiliation Comment

1.0 25.11.2023 Sergey Litvinov, Sebastian Kaltenbach ETHZ

DCoMEX Research Report

Deliverable 4.4
In this report, we present the final outcomes of Deliverable 4.4, documenting the progressive versions of Korali developed through-
out the project and showcasing their enhancements in performance, features, and documentation. The report is divided into three
parts. The initial section briefly discusses the implemented optimization methods integrated into Korali during the project, provid-
ing rationale for their necessity and presenting benchmark test cases. In the subsequent section (Section 2), a similar approach
is taken for the methods related to Bayesian inference, while Section 3 is dedicated to the documentation of Korali. Conclusively,
this report summarizes the achieved objectives and offers an insight into how Korali will significantly contribute to the final tasks
remaining in the DCoMEX project.

Stochastic Optimization
During the DCoMEX project, we identified the need for a stochastic optimization method that is capable of finding an optimum
without relying on gradient information. We have chosen to use the CMA-ES [1] which has generated promising results in various
applications. The CMA-ES method is an evolutionary strategy that is based on using a multivariate normal distribution and iterative
adapting its covariance matrix (as well as mean) during the optimization. We discovered that this method has limitations in case
of mixed-integer problems and thus also implemented a second, very similar method, Distance-weighted eXponential Natural Evo-
lution Strategy taking account of Implicit Constraint and Integer (DX-NES-ICI), that is more suitable for mixed-integer problems [2].
The methods have been presented in detail in the last Deliverable D4.3. In the following, we are showing two benchmark studies
and the obtained results with applying both mentioned methods:

Benchmark 1: Rosenbrock function
We test the two mentioned optimization algorithms using the four-dimensional Rosenbrock function:

f(x1, x2, x3, x4) =

2∑
i=1

(
100(x2

2i−1 − x2i)
2 + (x2i−1 − 1)2

)
(1)

For both algorithms we used the default parameter-values as reported in [1] and [2] as well as a population size of 100. In 10 runs
each, both methods converged to the correct solution each time which is (1, 1, 1, 1)

Method x1 x2 x3 x4

CMA-ES 1.00 1.00 1.00 1.00
DX-NES-ICI 1.00 1.00 1.00 1.00

True Optimum 1.00 1.00 1.00 1.00

Table 1: Found optimum using the two proposed methods averaged over 10 runs each

Benchmark 2: Reversed Ellipsoid
As a second benchmark case, we use the reversed ellipsoid example as presented in [2]. Here,Nint is the dimension of the integer
variables involved andNco the dimension of the continuous variables. The total dimension is the summationof these twoquantities.

f(x) =

Nint∑
i=1

(
1000(j−1)/(N−1)xint,j

)2

+

Nco∑
i=1

(
1000(Nint+j−1)/(N−1)xco,j

)2

(2)

As this is a mixed-integer optimization problem, CMA-ES can not be used. Our second method was able to identify the correct
optimum in 10 out of 10 runs. We thus conclude that this method is suitable for solving mixed-integer optimization problems and
complements our existing CMA-ES implementation The correct optimum found for this 80 dimensional test case is zero for all
continuous and discrete variables involved and was correctly identified by DX-NES-ICI.

Bayesian Inference
During the DCoMEX project, we identified the need for an efficient algorithm for Bayesian inference and have chosen TMCMC. This
flexible and efficient method has been so far successfully applied to all Bayesian inference problems within the DCoMEX project.
The algorithm has already been described in detail in previous reports and we are here presenting a benchmark study. Moreover,
we also created a Colab Notebook which is in detail described in the next section to show potential users of our software how the
implemented TMCMC algorithm can be applied to their Bayesian inference problem.

DCoMEX Research Report

Benchmark:
A a test case, we inferred the parameters of a quadratic regression model from noisy data using only a small amount of data. We
observed that as expected the accuracy increased if more data was added, whereas for smaller amount of data, the estimated noise
level was too high. For our final run using 500 data points, we were able to identify all four parameters of the model.

yi = a+ bxi + cx2
i + σϵi (3)

Here ϵi are i.i.d. samples from a standard normal distribution. This leads to the following conditional distribution:

p(yi|xi, a, b, c, σ) = N (a+ bxi + cx2
i , σ

2) (4)

Combined with uninformative uniform priors, we arrive at the posterior and can sample from this posterior using TMCMC.

We tried to infer the parameters based on 5,50 and 500 data points and obtained the following results: We moreover are

Number of Data points a b c σ
5 1.93 3.06 0.51 0.14
50 1.95 3.13 0.50 0.11
500 2.00 2.98 0.50 0.10

True Parameters 2.00 3.00 0.50 0.10

Table 2: Inferred Posterior Mean of the parameters. Values are calculated by averaging over 10 TMCMC runs with 2000 samples
each

providing the learned posterior distribution in the following figures. As expected the shape of the posterior converges to a Normal
distribution for the parameters for a large amount of data points, whereas for a very small amount of data points the shape of the
posterior is more complex.

Documentation
Wehave focused on providing a good documentation of out implementation right from the start of this project. The documentation
was already submitted as part of the report for an earlier deliverable and further extended since. It can be accessed at https:
//dcomex-framework-prototype.readthedocs.io/en/latest/.

To enhance our documentation and broaden Korali’s accessibility, we’ve developed a pre-built version tailored for easy instal-
lation in Google Colab. This version prioritizes performance, harnessing native libraries and fine-tuning specifically for the Google
Colab environment (Ubuntu 22, LTS), ensuring optimal functionality on this and similar platforms.

Additionally, we’ve created two Colab notebooks showcasing stochastic optimization and MCMC using Korali. Both notebooks,
alongwith their outputs, are appended to this report in Appendix A and B. These resources aim to further enrich the user experience
and facilitate easier utilization of Korali for a wider audience.

Conclusion and Outlook
We have extended Korali to have the necessary capabilities to be applied to all required application within the DCoMEX project.
Moreover, we have significantly improved the documentation and provided a very easy way to install the software using a pre-built
version as well as two Google Colab that explain some of the key functions of Korali in less than 100 lines of code each.
We are looking forward to applying the algorithm implemented in Korali to the DCoMEX application areas.

References
[1] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The co-

variance matrix adaptation. In Proceedings of IEEE international conference on evolutionary computation, pages 312–317. IEEE,
1996.

[2] Koki Ikeda and Isao Ono. Natural evolution strategy for mixed-integer black-box optimization. arXiv preprint arXiv:2304.10724,
2023.

DCoMEX Research Report

Figure 1: Obtained posterior distribution using 5 noisy data points only.

DCoMEX Research Report

Figure 2: Obtained posterior distribution using 50 noisy data points only.

DCoMEX Research Report

Figure 3: Obtained posterior distribution using 500 noisy data points only.

DCoMEX Research Report

Appendix A: Colab Inference
This Appendix contains the Colab notebook which shows and explains how to do Bayesian Inference with Korali in less than 100
lines of code.
The Colab can also be accessed directly here:
https://colab.research.google.com/drive/1yYn52RVyAA46a2niEXwim3fYHZh5ahG-?usp=sharing

27.11.23, 15:04Korali_Inference.ipynb - Colaboratory

Page 1 of 3https://colab.research.google.com/drive/1yYn52RVyAA46a2niEXwim3fYHZh5ahG-#scrollTo=X4ez5empGH-I

%pip install -q --progress-bar off https://github.com/slitvinov/dcomex-framework/releases/latest/download/korali-1.0-cp310-cp310-linux_x86_64.whl

 "Minimum": lo,

%pip install -q --progress-bar off https://github.com/slitvinov/dcomex-framework/rele

We are applying the TMCMC algorithm to a linear regression. The paraemter-space is three
dimensional and the likelihood is a Gaussian. The mathematical details are presented below.
The example can be mod>ed by changing the likelihood as well as adjusting the priors.

The model employed is a linear regressison model with a Gaussian noise ϵ:
y=ax+b+σ ϵ
For the three parameters a,b, and σ we are each assuming a uniform prior distribution with
appropriate bounds. To infer the posterior of the paremters we have collected 5 data points
(x,y) which are used within the likelihood. We note that we suggest to specify the loglikelihood
isntead of the likelihood.

import korali
import korali.plot.__main__
import statistics
import math
def model(s):
 a, b, sig = s["Parameters"]
 ssq = sig**2
 s["logLikelihood"] = -0.5 * len(x) * math.log(
 2 * math.pi * ssq) - 0.5 * statistics.fsum(
 (a * x + b - y)**2 for x, y in zip(x, y)) / ssq
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [3.21, 4.14, 4.94, 6.06, 6.84]
e = korali.Experiment()
e["Problem"] = {"Type": "Bayesian/Custom", "Likelihood Model": model}
e["Solver"] = {"Type": "Sampler/TMCMC", "Population Size": 1000}
for i, (v, lo, hi) in enumerate(
 (("a", 0, 2), ("b", 0, 3), ("sigma", 1e-6, 0.2))):
 e["Distributions"][i] = {
 "Name": v,
 "Type": "Univariate/Uniform",
 "Minimum": lo,
 "Maximum": hi
 }
 e["Variables"][i] = {"Name": v, "Prior Distribution": v}
e["File Output"]["Path"] = "_korali_result_tmcmc"
k = korali.Engine()
k.run(e)
a, b, sig = zip(*e["Results"]["Posterior Sample Database"])
print("posterio mean: ", statistics.fmean(a), statistics.fmean(b),
 statistics.fmean(sig))

27.11.23, 15:04Korali_Inference.ipynb - Colaboratory

Page 2 of 3https://colab.research.google.com/drive/1yYn52RVyAA46a2niEXwim3fYHZh5ahG-#scrollTo=X4ez5empGH-I

posterio mean: 0.9161181843414956 2.3019057054827403 0.11266113186804792

 statistics.fmean(sig))
korali.plot.__main__.main(e["File Output"]["Path"], False, "");

DCoMEX Research Report

Appendix B: Colab Optimization
This Appendix contains the Colab notebook which shows and explains how to do Optimization with Korali in less than 100 lines of
code.
The Colab can also be accessed directly here:
https://colab.research.google.com/drive/12KIs3VyWavHV4ubkTQ0-IQuUtnMWhnoY?usp=sharing

27.11.23, 15:03Korali_Optimization.ipynb - Colaboratory

Page 1 of 3https://colab.research.google.com/drive/12KIs3VyWavHV4ubkTQ0-IQuUtnMWhnoY#scrollTo=b9OJM-UBGGQm

%pip install -q --progress-bar off https://github.com/slitvinov/dcomex-framework/releases/latest/download/korali-1.0-cp310-cp310-linux_x86_64.whl

import korali.plot.__main__

%pip install -q --progress-bar off https://github.com/slitvinov/dcomex-framework/rele

We are using Korali to optimize the Rosenbrock function. This function could be replaced by
any other function with the same structure, i.e. the input parameters as input to the function
and a scalar value as the output. In our case we are dealing with a four-dimensional
parameter space and the optimum is located at (1,1,1,1).

import math
import korali
import korali.plot.__main__
def negative_rosenbrock(p):
 x = p["Parameters"]
 res = math.fsum(100 * (x - y**2)**2 + (1 - x)**2 for x, y in zip(x, x[1:]))
 p["F(x)"] = -res
k = korali.Engine()
e = korali.Experiment()
e["Random Seed"] = 0xC0FEE
e["Problem"]["Type"] = "Optimization"
e["Problem"]["Objective Function"] = negative_rosenbrock
dim = 4
for i in range(dim):
 e["Variables"][i]["Name"] = "x" + str(i)
 e["Variables"][i]["Initial Value"] = 1.0
 e["Variables"][i]["Initial Standard Deviation"] = 1.0 / math.sqrt(dim)
e["Solver"]["Type"] = "Optimizer/CMAES"
e["Solver"]["Population Size"] = 32
e["Solver"]["Mu Value"] = 8
e["Solver"]["Termination Criteria"]["Max Generations"] = 100
e["File Output"]["Enabled"] = True
e["File Output"]["Path"] = '_korali_result_cmaes'
e["File Output"]["Frequency"] = 1
k.run(e)
korali.plot.__main__.main(e["File Output"]["Path"], False, "");

27.11.23, 15:03Korali_Optimization.ipynb - Colaboratory

Page 2 of 3https://colab.research.google.com/drive/12KIs3VyWavHV4ubkTQ0-IQuUtnMWhnoY#scrollTo=b9OJM-UBGGQm

-FI

XIF-Fbest|

-<(C)

CMAESDiagnostics

-Ipell

ObjectiveVariables

103

100

10-3

10-6

10-9

10-12

10-15

1.2

1.0

0.8

0.6

0.4

0.2

0.0

100

10-1

10-2

10°
Muni

10-2

10-4

10-610-3

10-4
10-8

20 406080100 20 4060 80

0 20 40 60 80 100

SquareRootofEigenvaluesofC

20 40 60

ovdiag(C)
80

The results are shown together with diagnostics of CMA-ES. In the upper right corner it, the
convergence of all four input parameters is shown. In the lower left corner the decrease of the
square root of the covariance matrix indicates succesfull convergence similar to the product
of scaling parameter and square-root of the diagonal which is shown in the lower right.

