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Deliverable 4.1
Anovel TransitionalMarkov ChainMonte Carlo Scheme (TMCMC) schemewas implemented in Korali and the results were published
in the paper “The stress-free state of human erythrocytes: data driven inference of a transferable RBC model” [1]. In the following
we present a summary of the findings which is closely based on the mentioned paper.

The developed TMCMC solver is based on the BASIS sampler [7] which is based on the algorithm introduced by Ching et al. [2].
The key idea of any algorithm based on the transitional Markov chain idea is to gradually transit from the prior to our posterior
distribution. In more detail, for a prior p(θ) and a likelihood p(D|θ) we evaluateM intermediate target distributions:

p(θ|D) ∝ p(D|θ)γip(θ) (1)

Here, i = 1, ...,M and γ1 < γ2 < ..... < γM . The γ is increased slowly such that the evaluated distributions gradually changes
from prior to the targeted posterior. The resulting set of samples can then be determined using weight factors as described in [2].
As for the DCoMEX project as well as for the application mentioned later, we are interested in hierarchical models we adapt the
TMCMC solver for hierarchical stochastic models as suggested in [6]. This idea utilizes importance sampling to be able to deal with
different levels/parts of the model individually. To obtain a general applicable solvers we do not make use of the gradient of the
model with respect to the parameters, i.e. we do not require the model to be differentiable.

The mentioned sampling algorithm has been implemented into Korali [5]. In this report, we are presenting one example to
underline the strength of our sampling method with regards to hierarchical models. We first introduce the model of the Red
Blood Cell (RBC) to which we applied our sampling algorithm and show that it has the structure of a general hierarchical model.
Subsequently we present the results obtained using the Korali implementation.

Computational model of the Red Blood Cell
RBC are modeled as a visco-elastic membrane enclosing a viscous fluid (cytoplasm). The membrane is discretized into a triangle
mesh withNv vertices,Nt triangles andNe edges. Each vertex is a particle of massm, position ri and velocity vi, i = 1, 2, . . . , Nv ,
that evolves in time according to Newton’s law of motion,

ṙi = vi,

v̇i = fi/m,

where fi is the force exerted on the ith particle. The particles undergo forces coming from in-plane elasticity of the cytoskeleton,
bending elasticity from the lipid bilayer, viscous contribution of the lipid bilayer and external forces such as those coming from the
surrounding fluid. Additionally, area of the membrane and volume of the cell are constrained to model the incompressibility of the
lipid bilayer and the cytosol, respectively, via energy penalization terms. All above contributions are written as

fi = −∇i (Uin−plane + Ubending + Uarea + Uvolume) + fvisci + fflucti + fexti ,

where∇i is the gradient with respect to the position ri.
The in-plane energy is
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whereα and β are the local dilation and shear strain invariants of themembrane, αk and βk are the area and shear strain invariants
of the triangle k and Ak is the area of triangle k. The coefficients Kα and µ are the dilation and shear elastic moduli of the
membrane, respectively. a3, a4, b1 and b2 are parameters that were set to a3 = −1, a4 = 8, b1 = 0.7 and b2 = 0.75.

The bending energy is chosen to [4]

Ubending = 2κb

∮
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where κb is the bending energy coefficient, H0 is the spontaneous mean curvature (set to 0 in the current work), H is the mean
curvature and

Hk =
1
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∑
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lijϕij , (2)
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where the sum goes over all the neighboring dihedra of the vertex k, composed of triangles i and j. The length of the common
edge between the triangles i and j is lij and ϕij is the angle between the normal vectors of these two triangles, cosϕij = ni · nj .
The area Av

k in is the area associated to the vertex k,

Av
k =

1

3

∑
⟨i⟩k

Ai. (3)

The penalization terms for the area and volume constrains of the cell are expressed

Uarea = kA
(A−A0)

2

A0
, Uvolume = kV

(V − V0)
2

V0
,

where A0 and V0 are the area and volume of the cell at rest. The coefficients kA and kv are chosen large enough to keep the
membrane within a small deviation from the required area and volume.

The viscous force acting on each particles is given by

fvisci = −
∑
j

γ (vij · eij) eij , (4)

where the sum goes over all connected vertices to i, γ is a friction coefficient, vij = vi − vj and eij is the unit vector from rj to
ri. We define the viscosity of the membrane as ηm = γ

√
3/4. To satisfy the fluctuation-dissipation balance, the fluctuation forces

are chosen as
fflucti =

∑
j

σξijeij , (5)

where σ =
√
2kBTγ, kBT is the temperature (in energy units) and ξij is a random variable not correlated in time satisfying

ξij = ξji, ⟨ξij⟩ = 0 and ⟨ξijξlm⟩ = δilδjm − δjlδim. The shear and bending forces are computed by taking the negative gradient
of the discretized energies with respect to the position of the mesh vertices.

Parameters dependencies in the RBC model
Here we describe the dependencies (conditional probabilities) of each random variable in the RBC model. We assume that the
parameters of the computational model are conditioned on the hyper-parameters with the following probability distributions:

p(v |ψ) = T N (v;µv, σv, 0, 1) ,

p(κb |ψ) = T N (κb;µκb
, σκb

, aκb
, bκb

) ,

p(α |ψ) = N (α;µα, σα) , α ∈ {µ, b2, ηm},

whereN (·;µ, σ) is the normal distribution with mean µ and standard deviation σ and T N (·;µ, σ, a, b) is the probability density
of the truncated normal in the interval [a, b]. The bounds for the bending modulus are chosen as aκb

= 1.074 × 10−19 J and
bκb

= 1.074× 10−18 J. The hyper-parameter vectorψ comprises the mean and variance of all RBC parameters.
The first experiment consists in measuring the shape of a RBC in its equilibrium shape. The shape is quantified by the diameter

D, minimum thickness hmin and maximum thickness hmax of the equilibrated cell. The experimental data are assumed to be a
realization of the observable yeq,1 = (D,hmin, hmax) following the forward statistical model

yeq,1 = Geq(ϑ1) + σeq,1Σε,

whereGeq = (GD, Ghmin
, Ghmax

)withGD,Ghmin
andGhmax

representingD, hmin and hmax obtained from the computational
model, respectively, σeq,1 is the relative error to be calibrated,Σ is a diagonal matrix with diag(Σ) = Geq(ϑ1) and ε ∼ N (0,1).

The second experiment consists in pulling the two ends of a RBC with opposite forces of magnitude Fext. The experimental
data report the diameters of the stretched cells along the two largest principal axes,Dax andDtr, for n different stretching force
magnitudes. We assume that the axial and transverse diameters reported in the experiments are normally distributed around the
output of the computational model,

yax,i,j = GDax(Fext,j ,ϑ) + σax,iεax,i,j ,

ytr,i,j = GDtr (Fext,j ,ϑ) + σtr,iεtr,i,j ,

where GDax(Fext,j ,ϑ) and GDtr (Fext,j ,ϑ), j = 1, 2, . . . , n, are the axial and transverse diameters estimated by the compu-
tational model at input stretching forces Fext,j and parameters ϑ, εax,i,j ∼ N (0, 1) and εtr,i,j ∼ N (0, 1), with i = 2, 3 and
j = 1, 2, . . . , n. The standard deviations σax,i and σtr,i are grouped into σst,i = (σax,i, σtr,i) and the observable yax,i,j and
ytr,i,j , j = 1, 2, . . . , n, are grouped into the vector yst,i in the DAG.
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Figure 1: Hierarchical stocahstic model of the RBC

The last experiment corresponds to an initially stretched RBC relaxing to its resting shape. The ratio of the two main diameters,
z = Dax/Dtr, is recorded over time and has beenmeasured experimentally in [3]. Thesemeasurements have been performedwith
arbitrary initial conditions, which would require to fit the corresponding stretching force to reach that shape for each parameterϑ.
This approach would require a prohibitive computational cost and we instead assume that the data follows an exponential decay
as suggested in [3],

z(t, tc) = z∞
Λ + e−t/tc

Λ− e−t/tc
, (6)

where tc is the characteristic relaxation time of the RBC, Λ = (z0 + z∞)/(z0 − z∞), and z0 and z∞ are the initial and final ratio of
the diameters, respectively, grouped in the parameter vectorϑz = (z0, z∞). The parameters of the RBCmodel do not influence the
initial conditions, hence z0 is not dependent on these parameters. Similarly, z∞ can have a bias due to the experimental conditions
(e.g. the orientation of the cell when measuring the diameters) that does not depend on the cell mechanical properties. Instead,
we assume that only tc depends on the RBC parameters.

The computationalmodel consists in letting the cell relax from an arbitrary initial stretching position (chosen in the linear regime
of the stretching curve, z0 ≈ 2) and computing the exponential decay Gtc(ϑ) from a least square fit. The characteristic time tc is
assumed to follow a normal distribution with meanGtc(ϑ) and standard deviation σtc (to be inferred),

tc,i = Gtc(ϑi) + σtc,iεtc,i, i = 4, 5, 6, 7,

with εtc,i ∼ N (0, 1). The data is then modeled according to (6) with an additive Gaussian noise of standard deviation σz,i,

yre,i,j = z(tj , tc,i) + σz,iεz,i,j ,

where tj , j = 1, 2, . . . , n are the measurement times reported by the experiments and εz,i,j ∼ N (0, 1). For a given data set
i ∈ {4, 5, 6, 7}, the parameters ϑi, σtc,i, tc,i, ϑz,i = (z0,i, z∞,i) and σz,i are inferred all together to get the posterior of the RBC
parameters given the relaxation data.

The model and its dependencies is summarized in Figure 1.

Sampling using Korali
The parameters of the RBCmodel are sampled using the Korali framework and our TMCMC implementation. Each sampling stage is
performed using TMCMCwith 50’000 samples. The resulting posterior distribution of the RBC parameters, p(ϑnew |d), is shown on
the following figure. All distributions have a clear peak with relatively high uncertainties around the MAP as our data set has been
quiet heterogen. The results obtained show that the Korali implementation can be used to obtain posterior distributions based on
a hierarchical stochastic model.
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Figure 2: Posterior distribution for the parameters
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