
DCoMEX - 956201

Data driven Computational Mechanics at EXascale

Data driven Computational Mechanics at EXascale

Work program topic: EuroHPC-01-2019
Type of action: Research and Innovation Action (RIA)

REPORT ON AI-SOLVE LIBRARY PROTOTYPE

DELIVERABLE D3.2

Version No 1

http://www.dcomex.eu/
This project has received funding from the European High-Performance Computing Joint
Undertaking Joint Undertaking ('the JU'), under Grant Agreement No 956201

Ref. Ares(2024)1228612 - 18/02/2024

http://www.dcomex.eu/

DCoMEX Deliverable 3.2.
 Plan

2

D OC U ME N T SU MMA RY I N F ORMA T I ON

Project Title Data driven Computational Mechanics at EXascale

Project Acronym DCoMEX

Project No: 956201

Call Identifier: EuroHPC-01-2019

Project Start Date 01/04/2021

Related work package WP 3

Related task(s) Task 3.1, 3.2, 3.3, 3.7

Lead Organisation NTUA

Submission date 18/02/2024

Re-submission date

Dissemination Level PU

Quality Control:

 Who Affiliation Date

Checked by internal
reviewer

George Stavroulakis NTUA 17/02/2024

Checked by WP Leader Vissarion Papadopoulos NTUA 17/02/2024

Checked by Project
Coordinator

Vissarion Papadopoulos NTUA 17/02/2024

Document Change History:

Version Date Author (s) Affiliation Comment
1.0 16.02.2024 Ioannis Kalogeris NTUA

DCoMEX Deliverable 3.2.
 Plan

Contents
1. Description.. 4
2. Iterative Solvers for large-scale systems ... 5

2.1 Problem statement ... 5
2.2 Preconditioned Conjugate gradient method ... 5
2.3 Block Conjugate Gradient method ... 6
2.4 Algebraic Multigrid method .. 7
2.5 Domain Decomposition methods ... 8

2.5.1 Subdomains and mapping operators .. 8
2.5.2 Local problem solution ... 10
2.5.3 Interface problem solution .. 10
2.5.4 Rigid body modes ... 11
2.5.5 P-DDM: The Primal Substructuring Method (PSM) ... 12
2.5.6 D-DDM: The Finite Element Tearing and Interconnecting (FETI) method ... 12
2.5.7 P-DDM for static analysis with D-DDM based preconditioners: The PFETI method .. 14

3. AI accelerated Iterative Solvers for parameterized problems .. 16
3.1 Data-driven solution framework-POD-2G solver ... 16
3.2 Fusing nonlinear solvers with transformers for accelerating parameterized transient problems .. 18

4. Contents of the AI-Solve software library ... 22
4.1 Linear algebra repository ... 22
4.2 Solvers repository ... 22
4.3 Machine learning repository .. 23
4.4 AISolve.core repository ... 23
4.5 AISolve.MSolve repository ... 23

5. Numerical Applications ... 25
5.1 Accelerating crack propagation problems using DDM ... 25
5.2 Solution to the parameterized Biot problem using POD-2G ... 26
5.3 Accelerating the nonlinear analysis of water tower under random base excitation .. 28

6. Summary and future work .. 32
References .. 33

DCoMEX Deliverable 3.2.
 Plan

1. Description

The rapid advancements in the field of machine learning (ML) has offered researchers new tools to tackle

challenging engineering problems, especially in multi-query scenarios. In recent years, reduced-order modeling
techniques and neural networks have seen numerous applications in the development of surrogate models, aimed to
simplify the solution process for complex engineering problems. In this direction, WP2 of the DCoMEX project was
devoted to the development of such surrogate models using feedforward neural networks, convolutional autoencoders
and the diffusion maps algorithm, as described in D2.3. Despite their powerful approximation capabilities, however,
these surrogate models cannot guarantee convergence to the exact solution of the problem.
 On the other hand, advanced iterative solvers from the field of linear algebra can guarantee convergence to the
exact solution of linear systems but are unable to attain a uniformly fast convergence for every parameter instance in a
parameterized problem. In the effort to take the best of two worlds, the AI-Solve software aims at bridging the gap
between machine learning and linear algebra algorithms for accelerating the solution of real-life computational
mechanics problems in multi-query scenarios. To achieve this, the ML-based surrogate modeling techniques developed
in WP2 of the project are combined with iterative solvers in order to develop novel algorithms capable of handling very
demanding problems in an efficient manner.

In particular, the D3.2 “Report on AI-Solve library prototype” reports on the developments in WP3 of the project
and it accompanies D3.1, which is the AI-Solve library software. In this deliverable the functionalities of AI-Solve library
are presented, followed by an explanation of the library’s content and a set of numerical applications that showcase its
capabilities for efficiently solving large-scale linear systems.

This document is structured as follows: Section 2 describes the mathematical theory for the set of algorithms
implemented in MSolve for solving large-scale linear systems. Section 3 presents the methodologies developed within
the DCoMEX project that utilize machine learning to enhance the previously mentioned linear algebraic solvers for
parametrized problems in computational mechanics. Section 4 is devoted to the illustration of the AI-Solve library, the
explanation of the code content and its functionalities. Section 5 involves a set of applications that demonstrate the
computational merits this library has to offer in the field of computational science and engineering.

DCoMEX Deliverable 3.2.
 Plan

2. Iterative Solvers for large-scale systems
2.1 Problem statement

In scientific computing, there is a constant need for solving larger and computationally more demanding
problems with increased accuracy and improved numerical performance. This holds particularly true in multi-query
scenarios such as optimization, uncertainty quantification, inverse problems and optimal control, where the problems
under investigation need to be solved for numerous different parameter instances with high accuracy and efficiency.
Therefore, constructing efficient numerical solvers for complex systems described by partial differential equations is
crucial for many scientific disciplines.

In the context of the Finite Element Method (FEM), a parameterized partial differential equation can be
discretized into a 𝑑 × 𝑑 linear system of equations (or sequence of linear systems for transient problems) of the form:

𝑲(𝜽)𝒖(𝜽) = 𝒇(𝜽)

where 𝑲 ∈ 𝑅𝑑×𝑑 is the system matrix, 𝒖 ∈ 𝑅𝑑 is the solution vector containing the unknown nodal values at specific

locations of the PDE’s domain, 𝒇 ∈ 𝑅𝑑 is the equivalent force vector and 𝜽 ∈ 𝑅𝑛 is the vector of parameters that
influence the system. Solving such a linear system for a detailed discretization (𝑑 ≫ 1) can be computationally intensive,
particularly in multiquery problems that require numerous system evaluations for various instances of parameters 𝜽.
Therefore, it becomes evident that efficient numerical solvers for linear systems of equations are of vital importance in
the analysis of large scale real-world problems. In the remainder of this section, we revisit the basic ideas behind three
of the most efficient methods for solving such systems, namely, the Preconditioned Conjugate Gradient Method (PCG),
the block variant of the PCG and the Algebraic Multigrid (AMG) method.

2.2 Preconditioned Conjugate gradient method
As an iterative technique, the conjugate gradient method starts by an initial guess 𝒖(0) for the system 𝑲𝒖 = 𝒇, with

𝑲 being a symmetric positive definite matrix, and constructs a sequence of vectors { 𝒖(1), 𝒖(2), … } that converge to the
exact solution 𝑲−1𝒇 in, at most, 𝑑 iterations. In practice, however, the algorithm may terminate after 𝑘 < 𝑑 iterations,

provided that the condition for the residual after the 𝑘-th iteration ‖𝒓(𝑘)‖ = ‖𝑲𝒖(𝑘) − 𝒇‖ ≤ 𝛿, with 𝛿 being a

prescribed accuracy threshold.

 It is important to mention that the improvement in the sequence of approximations 𝒖(𝑘) is determined by the
condition number 𝑐(𝑲) of the system matrix 𝑲; the larger 𝑐(𝑲) is, the slower the improvement. A standard approach
to enhance the convergence of the CG method is though preconditioning (PCG), which involves the application of a
linear transformation to the system with a matrix 𝑻, called the preconditioner, in order to reduce the condition number

of the problem. Thus, the original system 𝑲𝒖 − 𝒇 = 𝟎 is replaced with 𝑻−1(𝑲𝒖 − 𝒇) = 𝟎, such that 𝑐(𝑻−1𝑲) is smaller
than 𝑐(𝑲). The steps of the PCG algorithm are presented in the following algorithm.

DCoMEX Deliverable 3.2.
 Plan

The choice of the precondition T in PCG plays a crucial role in the fast convergence of the algorithm. Some generic
choices include the Jacobi (diagonal) preconditioner and the incomplete LU and Choleski factorizations. Moreover,
multigrid methods such as the AMG and Domain Decomposition methods that will be elaborated on the next sections,
are also very efficient preconditioners to the CG method.

2.3 Block Conjugate Gradient method
The drawback of the CG algorithm is that it cannot exploit the parallel computing capabilities offered by modern
systems. The block CG algorithm was specifically developed to remedy this issue.

This algorithm starts with an initial guess 𝒙0 for the problem 𝑨 ⋅ 𝒙 = 𝒃 and computes the residual 𝒓𝟎 = 𝒃 − 𝑨 ⋅ 𝒙𝟎. The
Krylov subspace of the matrix 𝑨 with the vector 𝒓𝟎 is computed using parallel processing for powers equal to the size of
the block. Then, the steps for the block are the same as the PCG method, but the vectors 𝒓, 𝒑, 𝒙 are linear combinations
of the Krylov vectors. The weakness of the algorithm is that it tends to exhibit numerical instabilities when the Krylov
vectors approach the eigenvectors of Α and it also requires 1.5-2 times the steps of the classic PCG algorithm.
However, it offers some significant advantages, namely: (i) its steps can be executed in a parallel fashion and (ii) these
steps require negligible computational time, effectively negating the cost of the additional iterations needed compared
to CG. The algorithm for a block size of m, for an n x n linear system using the matrix 𝑴 as a preconditioner is as follows:

- Compute the residual: 𝒓𝟎 = 𝒃 − 𝑨 ⋅ 𝒙𝟎
- Set: 𝒙 = 𝒙𝟎

- Compute the 𝑛 ⋅ 𝑚 matrices 𝑷 = 𝑹 = 𝐾𝑟𝑦𝑙𝑜𝑣𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑨 ⋅ 𝑴−𝟏, 𝒓), that is (𝑨 ⋅ 𝑴−𝟏)
0

⋅ 𝒓0, (𝑨 ⋅ 𝑴−𝟏)
1

⋅ 𝒓0, …..,

(𝑨 ⋅ 𝑴−𝟏)
(𝑚−1)

⋅ 𝒓0

- Compute and store as (2𝑚 − 1)-sized vectors the inner products: 𝑹𝑷 = 𝑷𝑷 = 𝑹𝑹 = 𝑅,𝑖 ⋅ 𝑴−𝟏 ⋅ 𝑅,𝑗, for 1 ≤ 𝑖, 𝑗 ≤ 𝑚

and 𝑖 + 𝑗 − 1 = 1,2, … ,2𝑚 − 1
- Set 𝑟𝑟 = 𝑅𝑅1
- If 𝑟𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 terminate and accept 𝒙𝟎 as the solution, else
- begin first loop

- Set 𝒓𝒄 = {
1 0
0 0
… …

}, 𝒑𝒄 = {
0 1
0 0
… …

} and 𝒙𝒄 = {
0 0
0 0
… …

} that represent 𝒓, 𝒑 and 𝒙 as linear combinations of 𝑷 and

𝑹, e.g. 𝒓 = 𝑹 ⋅ (𝒓𝒄),𝟏 + 𝑷 ⋅ (𝒓𝒄),𝟐.

- begin second loop for m steps

- Compute

𝒑𝑨𝒑 = ∑ 𝑹𝑹𝟐𝒊

𝒎

𝒊=𝟏

(𝒓𝒄)𝒊 + ∑ 𝑷𝑷𝟐𝒊

𝒎

𝒊=𝟏

(𝒑𝒄)𝒊+

∑ ∑ 𝟐

𝒎

𝒋=𝒊+𝟏

𝒎−𝟏

𝒊=𝟏

𝑹𝑹𝒊+𝒋(𝒓𝒄)𝒊(𝒓𝒄)𝒋 + ∑ ∑ 𝟐

𝒎

𝒋=𝒊+𝟏

𝒎−𝟏

𝒊=𝟏

𝑷𝑷𝒊+𝒋(𝒑𝒄)𝒊(𝒑𝒄)𝒋+

∑ ∑ 𝟐

𝒎

𝒋=𝟏

𝒎

𝒊=𝟏

𝑹𝑷𝒊+𝒋(𝒓𝒄)𝒊(𝒑𝒄)𝒋

- If 𝒑𝑨𝒑 ≤ 0 terminate due to instability, else

- Compute 𝛼 =
𝑟𝑟

𝒑𝑨𝒑

- Compute 𝒙𝒄 = 𝒙𝒄 + 𝛼 ⋅ 𝒑𝒄
- Compute (𝒓𝒄)2...𝑚 = (𝒓𝒄)2...𝑚 − 𝑎(𝒑𝒄)1...𝑚−1
- Compute

DCoMEX Deliverable 3.2.
 Plan

𝑟𝑟2 = ∑ 𝑅𝑅2𝑖−1

𝑚

𝑖=1

(𝑟𝑐)𝑖 + ∑ 𝑃𝑃2𝑖−1

𝑚

𝑖=1

(𝑝𝑐)𝑖+

∑ ∑ 2

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

𝑅𝑅𝑖+𝑗−1(𝑟𝑐)𝑖(𝑟𝑐)𝑗 + ∑ ∑ 2

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

𝑃𝑃𝑖+𝑗−1(𝑝𝑐)𝑖(𝑝𝑐)𝑗+

∑ ∑ 2

𝑚

𝑗=1

𝑚

𝑖=1

𝑅𝑃𝑖+𝑗−1(𝑟𝑐)𝑖(𝑝𝑐)𝑗

- Compute 𝛽 =
𝑟𝑟2

𝑟𝑟

- Compute 𝒑𝑐 = 𝒓𝒄 + 𝛽 ⋅ 𝒑𝑐

- Set 𝑟𝑟 = 𝑟𝑟2

- If 𝑟𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 proceed to compute 𝒙 and terminate.

- close second loop

- Compute the actual solution 𝒙 = 𝒙 + 𝑴−1 ⋅ [𝑹 ⋅ (𝒙𝒄),𝟏 + 𝑷 ⋅ (𝒙𝒄),𝟐]

- If number of iterations exceeded the maximun allowed terminate unsuccessfully, else

- Compute 𝒓 και 𝒑 as previously (e.g. 𝒓 = 𝑹 ⋅ (𝒓𝒄),𝟏 + 𝑷 ⋅ (𝒓𝒄),𝟐)

- Compute the 𝑛 ⋅ 𝑚 matrix 𝑹 = 𝐾𝑟𝑦𝑙𝑜𝑣𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑨 ⋅ 𝑴−𝟏, 𝒓) and the 𝑛 ⋅ (𝑚 + 1) matrix 𝑷 = 𝐾𝑟𝑦𝑙𝑜𝑣𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑨 ⋅

𝑴−𝟏, 𝒑).

- Compute and store in (2𝑚 − 1)-sized vectors the inner products: 𝑹𝑹 = 𝑹,𝒊 ⋅ 𝑴−𝟏 ⋅ 𝑹,𝒋, for 1 ≤ 𝑖, 𝑗 ≤ 𝑚 and 𝑖 + 𝑗 −

1 = 1,2, … ,2𝑚 − 1.

- Compute and store in (2𝑚 + 1)-sized vectors the inner products: 𝑷𝑷 = 𝑷,𝒊 ⋅ 𝑴−𝟏 ⋅ 𝑷,𝒋, for 1 ≤ 𝑖, 𝑗 ≤ 𝑚 + 1 and 𝑖 +

𝑗 − 1 = 1,2, … ,2𝑚 + 1

- Compute and store in 2𝑚-sized vectors the inner products: 𝑹𝑷 = 𝑹,𝒊 ⋅ 𝑴−𝟏 ⋅ 𝑷,𝒋, for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚 + 1 and

𝑖 + 𝑗 − 1 = 1,2, … ,2𝑚

- close first loop

2.4 Algebraic Multigrid method
The key idea in AMG algorithms is to employ a hierarchy of progressively coarser approximations to the linear system
under consideration in order to accelerate the convergence of classical simple and cheap iterative processes, such as
the damped Jacobi or Gauss-Seidel. These methods, commonly referred to as relaxation or smoothing are very efficient
in eliminating the high-frequency error modes, but inefficient in resolving low-energy modes. AMG overcomes this
problem through the coarse-level correction, as elaborated below.

 Let us consider the linear system 𝑲𝒖 = 𝒇, which describes the fine problem and let 𝒖(0) be an initial solution

to it. The two-level AMG defines a prolongation operator 𝑷, which is a full-column rank matrix in 𝑅𝑑×𝑑𝑐, 𝑑𝑐 < 𝑑,
and a relaxation scheme such as the Gauss-Seidel (GS). Then, the two-level AMG algorithm consists of the steps shown
in the following algorithm.

DCoMEX Deliverable 3.2.
 Plan

In the above algorithm, lines 4-10 describe what is known as a V-cycle, schematically depicted in Figure 1. The multi-
level version of the algorithm can be obtained by recursively applying the two-level algorithm.

Figure 1: Multigrid V-cycles in a (A) 2-level and a (B) 3-level setting

We will use the notation 𝒖(𝑘+1) = 𝐴𝑀𝐺(𝒖(𝑘); 𝑲, 𝒇, 𝑟1, 𝑟2) to denote the application of one AMG cycle with 𝑟1 iterations
for pre-relaxation and 𝑟2 iterations for post-relaxation.
 Even though the AMG algorithm can be used as a standalone iterative solver, yet its true potential lies in its
application as a preconditioned in the context of the PCG. The AMG preconditioned PCG algorithm is illustrated below.

2.5 Domain Decomposition methods

This section presents the basic aspects of domain decomposition methods (DDM) which provide the foundation for the
development of the more advanced primal and dual DDM (P-DDM and D-DDM respectively) used for the solution of
large-scale systems.

2.5.1 Subdomains and mapping operators

 Subdomain mapping operators for DDM can be implemented for mapping either the displacements and applied loads
or the Lagrange multipliers of the subdomains. If 𝒖 and 𝒇 represent the displacement and applied loads vectors of the
global domain and 𝒖𝑠and 𝒇𝑠 are vectors which refer to the corresponding quantities for every subdomain, the following
equations hold:

DCoMEX Deliverable 3.2.
 Plan

𝒖𝑠 = [𝑢(1) . . . 𝑢(𝑁𝑠)]𝑇 , 𝒇𝑠 = [𝑓(1) . . . 𝑓(𝑁𝑠)]𝑇, 𝒖𝑠 = 𝑳𝒖, and 𝒇 = 𝑳𝑇𝒇𝑠

where 𝑁𝑠 is the number of non-overlapping subdomains of the global domain and 𝐿 is the so-called global to local
mapping operator which is a Boolean matrix. These equations, when applied to the interface degrees of freedom
become

𝒖𝒃
𝑠 = [𝑢𝑏

(1)
. . . 𝑢𝑏

(𝑁𝑠)]
𝑇
 , 𝒇𝒃

𝑠 = [𝑓𝑏
(1)

. . . 𝑓𝑏
(𝑁𝑠)]

𝑇
, 𝒖𝒃

𝑠 = 𝑳𝒃𝒖𝒃, and 𝒇𝒃 = 𝑳𝒃
𝑇𝒇𝒃

𝑠

The traction forces on the interface nodes of the disconnected subdomains are usually expressed as:

 𝒕 = 𝒇𝑠 − 𝑩𝑻𝝀

or

 𝒕𝑏 = 𝒇𝑏
𝑠 − 𝑩𝑏

𝑇𝝀

when applied to the interface dof, where λ is the vector of the Lagrange multipliers and 𝑩 is the so-called Lagrange
mapping operator. The form of the mapping operator depends on the definition of the Lagrange multipliers. In the case
of redundant Lagrange multipliers, which are used in the present investigation, 𝑩 is a signed Boolean matrix.

Figure 2: A structural domain, split into subdomains. Arrows show the traction forces between the disconnected

subdomains

The Lagrange mapping matrices may also be used to express the displacement compatibility condition at subdomain
interfaces as:

 𝑩𝒖𝒔 = [𝑩(1) ⋯ 𝑩(𝑁𝑠)] [
𝒖(1)

⋮

𝒖(𝑁𝑠)

] = 𝟎

or

 𝑩𝑏𝒖𝑏
𝑠 = [𝑩𝑏

(1)
⋯ 𝑩𝑏

(𝑁𝑠)] [
𝒖𝑏

(1)

⋮

𝒖𝑏
(𝑁𝑠)

] = 𝟎

when applied to the interface dof.
Specific attention has to be paid when using these mapping operators in preconditioning steps of dual DDM. In the case
of global to local mapping operator with respect to homogeneous problems, the global to local mapping operator in the
preconditioning step can be written as:

 𝑳𝑝 = 𝑳(𝑴𝑠)−1

or
 𝑳𝒑𝒃

= 𝑳𝑏(𝑴𝑏
𝑠)−1

DCoMEX Deliverable 3.2.
 Plan

Moreover, for cases of splitting displacements or forces to heterogeneous subdomains inside a preconditioning step,
we get:
 𝒖𝑏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

= 𝑳𝑝𝑏
𝑇 𝒖𝑏

𝑠

 𝒇𝑏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑠 = 𝑳𝑝𝑏
𝒇𝑏

In the past, a number of modified versions of the Lagrange mapping operator that incorporate scaling effects have been
used in preconditioning steps of the dual DDM. In the case of redundant Lagrange multipliers and homogeneous
problems, the Lagrange mapping operator in the preconditioning step can be written as:

 𝑩𝑝 = 𝑩(𝑴𝑠)−1

or
 𝑩𝑝𝑏

= 𝑩𝑏(𝑴𝑏
𝑠)−1

when applied to the interface dof, where 𝑴𝑠 and 𝑀𝑏

𝑠 are diagonal matrices with diagonal entries the multiplicity of the
corresponding dof, which correspond to the number of subdomains that this dof belongs to.

2.5.2 Local problem solution

Domain decomposition methods require the repeated solution of many local subdomain problems corresponding to
the dof of the subdomains. These local subdomain problems are typically solved using a direct method since their size
is very small compared to the size of the global problem. In the case of D-DDM, local subdomain problems are of the
form:

 𝑲(𝑠)𝒖(𝑠) = 𝑓(𝑠) − 𝑩(𝑠)𝑇
𝝀

where 𝑲(𝑠)is the stiffness matrix of each subdomain.

In the case of P-DDM, similar local subdomain problems require repeated solution. These problems are of the form:

 𝑺(𝑠)𝒖𝑏
(𝑠)

= �̂�𝑏
(𝑠)

− 𝑩𝑏
(𝑠)𝑇

𝝀

where 𝑺(𝑠) is the Schur complement matrix and �̂�𝑏
(𝑠)

 is the condensed force vector, as shown later. The main difference
of these local problems is the fact that they either refer to all of the subdomain dof or to the interface ones. In the latter
case, the equations which are related to internal dof of the subdomains are eliminated first. In order to obtain the
corresponding relations, the local subdomain problem is re-arranged so that it can be written in the form:

 [
𝑲𝑏𝑏

(𝑠)
𝑲𝑏𝑖

(𝑠)

𝑲𝑖𝑏
(𝑠)

𝑲𝑖𝑖
(𝑠)

] [
𝒖𝑏

(𝑠)

𝒖𝑖
(𝑠)

] = [
𝒇𝑏

(𝑠)

𝒇𝑖
(𝑠)

] − [𝑩𝑏
𝑇

0
] 𝝀

with subscripts b and i denoting the restriction of the matrices to interface (boundary) and internal d.o.f., respectively.
With this re-arrangement, the following matrices and vectors are defined:

 𝑺(𝑠) = 𝑲𝑏𝑏
(𝑠)

− 𝑲𝑏𝑖
(𝑠)

(𝑲𝑖𝑖
(𝑠)

)
−1

𝑲𝑖𝑏
(𝑠)

 �̂�𝑏
(𝑠)

= 𝒇𝑏
(𝑠)

− 𝑲𝑏𝑖
(𝑠)

(𝑲𝑖𝑖
(𝑠)

)
−1

𝒇𝑖
(𝑠)

In the case of implicit dynamics, matrices 𝑲(𝑠), 𝑲𝑏𝑏
(𝑠)

, 𝑲𝑖𝑖
(𝑠)

 and 𝑺(𝑠) are coefficient matrices of the integrated dynamic

equilibrium equations and as such, they are always positive definite. This means that the corresponding matrices of the
subdomains have no null space and the structure they refer to (adequately constrained or not) have no rigid body
modes.

2.5.3 Interface problem solution

Domain decomposition methods require the solution of an interface problem in the form of 𝑨𝒙 = 𝒃, where 𝑨, 𝒙and 𝒃
are the left-hand side matrix, the solution vector and the right-hand side vector, respectively. Usually, the left-hand side
matrix is symmetric and positive definite or semi-definite. Furthermore, the above equation is typically solved iteratively

DCoMEX Deliverable 3.2.
 Plan

with the standard PCG method. The use of the PCG method also requires the definition of a positive definite

preconditioning matrix �̃�−1, as an approximation of the inverse or generalized inverse of 𝑨.

In the particular case of a semi-definite left-hand side matrix 𝑨 (i.e. for an unconstrained subdomain of a structural
mechanics problem), a solution of the interface problem exists under the condition:

 𝒃 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑨) ⇔ 𝑛𝑢𝑙𝑙(𝑨)𝑇 𝒃 = 𝟎

When the above condition holds, the interface problem has infinite solutions of the form:

 𝒙 = 𝒙 + 𝑛𝑢𝑙𝑙(𝑨) 𝒂, 𝒂 ∈ ℝ𝑑

where 𝒙 is a particular solution of the local interface and a is any vector with dimension equal to the dimension d of the
null-space of A. In the case of a semi-definite matrix A, the PCG succeeds by computing one of the above infinite
solutions of the equation.

2.5.4 Rigid body modes

By splitting the displacements 𝒖(𝑠) of a subdomain into 𝒖𝑟
(𝑠)

 and 𝒖𝑑
(𝑠)

, the following stands:

 𝒖(𝑠) = 𝒖𝑟
(𝑠) + 𝒖𝑑

(𝑠)

Displacements 𝒖𝑟
(𝑠)

 are caused by the rigid body modes of the subdomain while displacements 𝒖𝑑
(𝑠)

 are due to the

stiffness 𝑲(𝑠). To exclude these displacements, a set of artificial constraints is imposed so that displacements 𝒖𝑟
(𝑠)

 are
equal to 0. In practice, this can be accomplished by magnifying the corresponding diagonals of the stiffness matrix by
orders of magnitude, constituting these dof practically rigid. The stiffness matrix that occurs from this procedure now
represents a statically determined subdomain thus being positive definite and invertible, with its inverse being equal to

the generalized inverse 𝑲(𝑠)+
, and displacements 𝒖𝑑

(𝑠)
 being equal to:

 𝒖𝑑
(𝑠) = 𝑲(𝑠)+

(𝒇(𝑠) − 𝑩(𝑠)𝑇
𝝀𝑏)

while displacements 𝒖𝑟
(𝑠)

 are equal to:

 𝒖𝑟
(𝑠) = 𝑹(𝑠)𝒂(𝑠)

where 𝑹(𝑠) is a matrix consisting of the rigid body modes of the subdomain and is equal to the null space of the stiffness

matrix 𝑲(𝑠) and 𝒂(𝑠) is a vector representing the contribution of each rigid body mode at the displacement vector.

This implies that the loads 𝒇(𝒔) − 𝑩(𝒔)𝑻
𝝀𝒃 are self-equilibrated which means that:

 𝑹(𝑠)𝑇
(𝒇(𝑠) − 𝑩(𝑠)𝑇

𝝀𝑏) = 0

By combining the above equations we get:

 𝒖(𝑠) = 𝑲(𝑠)+
(𝒇(𝑠) − 𝑩(𝑠)𝑇

𝝀𝑏) + 𝑹(𝑠)𝒂(𝑠)

The previous two equations can be written in block form as:

 𝑹𝑠𝑇
(𝒇𝑠 − 𝑩𝑠𝑇

𝝀𝑏) = 𝟎

 𝒖𝒔 = 𝑲𝑠+
(𝒇𝑠 − 𝑩𝑇𝝀) + 𝑹𝑠𝒂

where

 𝑲𝑠+
= [

𝐾(1)+
. .

. ⋱ .

. . 𝐾(𝑁𝑠)+

] , 𝑹𝑠 = [
𝑅(1) . .

. ⋱ .

. . 𝑅(𝑁𝑠)

] , 𝒂 = [
𝑎(1)

⋮
𝑎(𝑁𝑠)

]

Regarding the interface equations, a corresponding block form is similarly derived:

DCoMEX Deliverable 3.2.
 Plan

 𝑹𝑏
𝑠𝑇

(�̂�𝑏
𝑠 − 𝑩𝑏

𝑇𝝀) = 0

 𝒖𝑏
𝑠 = 𝑺𝑠+

(�̂�𝑏
𝑠 − 𝑩𝑏

𝑇𝝀) + 𝑹𝑏
𝑠 𝒂

with

 𝑺𝑠+
= [

𝑆(1)+
. .

. ⋱ .

. . 𝑆(𝑁𝑠)+

] , �̂�𝑏
𝑠 = [

𝑓𝑏
(1)

⋮

𝑓𝑏
(𝑁𝑠)

]

and 𝑹𝑏

𝑠 denoting the restriction of 𝑹𝒔 to the interface dof.

2.5.5 P-DDM: The Primal Substructuring Method (PSM)

The basic DDM is the primal substructuring method, abbreviated in the following as PSM. In the context of this
DDM, the internal dof of the subdomains are eliminated first. The PSM interface displacement problem is thus
obtained:

 �̂�𝒖𝑏 = �̂�𝑏

where

 �̂� = 𝑳𝑏
𝑇𝑺𝒔𝑳𝑏, �̂�𝑏 = 𝑳𝑏

𝑇�̂�𝒃
𝒔

 �̂�𝑏
𝑠 = [𝑓𝑏

(1)
. . . 𝑓𝑏

(𝑁𝑠)]
𝑇

 𝑺𝑠 = [
𝑆(1) . .

. ⋱ .

. . 𝑆(𝑁𝑠)

]

The solution of the above linear system is usually performed with the PCG method, since the left-hand side matrix
is symmetric and positive definite or semi-definite.

In the past, several strategies have been proven efficient for preconditioning the underlying iterative solver for
these types of problems with a common choice being the preconditioner:

 �̃�−1 = 𝑳𝑝𝑏
𝑇 𝑺𝑠+

𝑳𝑝𝑏

which is used in the so-called Neumann–Neumann PSM. More precisely, the preconditioner �̃�−1 is implemented
as follows:

 �̃�−𝟏 = 𝑳𝑝𝑏
𝑇 𝑵𝑏

𝑠 𝑲𝑠+
𝑵𝑏

𝑠𝑇
𝑳𝑝𝑏

where 𝑵𝑏
𝑠 is a Boolean matrix which extracts the interface dof from subdomain dof vectors, as:

𝒖𝑏
𝑠 = 𝑵𝑏

𝑠 𝒖𝑠, 𝒇𝑏
𝑠 = 𝑵𝑏

𝑠 𝒇𝑠

2.5.6 D-DDM: The Finite Element Tearing and Interconnecting (FETI) method

The FETI method, is a dual DDM that has been implemented for a number of problems in computational mechanics.
Since its introduction, it has attracted a lot of attention and is considered as a fast domain decomposition algorithm
suitable for both serial and parallel computing environments. While its predecessor, the PSM, performs iterations in
order to compute the interface displacement vector 𝒖𝑏 of the structure, the FETI method iterates on the Lagrange
multiplier vector λ. The Lagrange multipliers, which represent the interaction forces between the subdomains, are dual
with respect to the interface displacements and this explains the name dual substructuring method, in comparison to
PSM. In the context of the FETI method, the nodal force vector f of the structure is first split to the subdomains:

 𝒇𝑠 = 𝑳𝑝𝒇

DCoMEX Deliverable 3.2.
 Plan

and the following system of equations is obtained:

 [
𝑭𝐼 −𝑮

−𝑮𝑇 𝟎
] [

𝝀
𝒂

] = [
𝒅

−𝒆
]

where

 𝑭𝑰 = 𝑩𝑲𝒔+
𝑩𝑻, 𝑮 = 𝑩𝑹𝒔, 𝒅 = 𝑩𝑲𝒔+

𝒇𝒔, 𝒆 = 𝑹𝒔𝑻
𝒇𝒔

Then, the following projector is introduced:

 𝑷 = 𝑰 − 𝑸𝑮(𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻

where, for homogeneous problems, operator 𝑷 is usually implemented with 𝑸 = 𝑰. However, for heterogeneous
problems matrix 𝑸 might be set otherwise as described at the end of this section.
Computations involving projector 𝑷 require the solution of linear problems of the form:

 (𝑮𝑻𝑸𝑮)𝒙 = 𝒃

which constitutes the so-called ‘‘coarse-grid’’ problem of the FETI method. This name is explained by the fact that 𝑮𝑻𝑸𝑮
is a sparse matrix, with the typical sparsity pattern of a finite element stiffness matrix, if one considers each subdomain
as a finite element node having the same number of dof as the number of its zero energy modes. This coarse problem
ensures the exchange of information between remote subdomains of the structure at each iteration of the underlying
iterative solver used for the interface problem, thus guaranteeing fast convergence.

Premultiplying the first of the two matrix equations with (𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸, it follows that for a given Lagrange multiplier

vector λ, the vector of the zero energy mode amplitudes 𝒂 is equal to:

 𝒂 = −(𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸(𝒅 − 𝑭𝑰𝝀)

Furthermore, it follows that the jump 𝛥𝒖𝒃 = 𝑩𝒖𝒔 of the displacement field at subdomain interfaces is equal to:

 𝛥𝒖𝒃 = 𝑩𝒖𝒔 = 𝒅 − 𝑭𝑰𝝀 + 𝑮𝒂 = 𝑷𝑻(𝒅 − 𝑭𝑰𝝀)

Thus, the linear system is equivalent to the following system where the unknown vectors 𝝀 and 𝒂 are decoupled:

 𝑷𝑻𝑭𝑰𝝀 = 𝑷𝑻𝒅

 𝑮𝑻𝒂 = 𝒆

In order to solve the above equations for the Lagrange multiplier vector λ, the latter is being split as follows:

 𝝀 = 𝝀𝟎 + 𝑷�̄�

where vector 𝝀𝟎 is chosen equal to:

 𝝀𝟎 = 𝑸𝑮(𝑮𝑻𝑸𝑮)
−𝟏

𝒆

Therefore, we end up with the following interface problem:

 (𝑷𝑻𝑭𝑰𝑷)�̄� = 𝑷𝑻(𝒅 − 𝑭𝑰𝝀𝟎)

In order to calculate the total displacement field 𝒖, the following steps are followed:

• The Lagrange multiplier vector �̄� is computed by solving the interface problem of the previous equation.

• The Lagrange multiplier vector 𝝀 is evaluated from 𝝀 = 𝝀𝟎 + 𝑷�̄�.

• The amplitudes a of the subdomain rigid body modes are computed from 𝒂 = −(𝑮𝑻𝑸𝑮)−𝟏𝑮𝑻𝑸(𝒅 − 𝑭𝑰𝝀).

• Subdomain displacement fields 𝑢𝑠 are computed from 𝒖𝒔 = 𝑲𝑠+
(𝒇𝑠 − 𝑩𝑇𝝀) + 𝑹𝑠𝒂.

• The total displacement field u of the structure is finally given by 𝒖 = 𝑳𝑝
𝑇𝒖𝑠

DCoMEX Deliverable 3.2.
 Plan

The two most widely used preconditioners for the FETI method are:

�̃�𝑰
𝑫−𝟏

= 𝑩𝒑𝒃
𝑺𝒔𝑩𝒑𝒃

𝑻

�̃�𝑰
𝑳−𝟏

= 𝑩𝒑𝒃
𝑲𝒃𝒃

𝒔 𝑩𝒑𝒃
𝑻

namely, the Dirichlet and the lumped preconditioners. The Dirichlet preconditioner is typically used in fourth-order
problems. Moreover, in second-order problems, the lumped preconditioner is usually more efficient in terms of the
total solution time. In some second-order problems however, namely in highly heterogeneous structures and in
problems where subdomains of bad aspect ratio are generated, the Dirichlet preconditioner may outperform the
lumped one. Variant forms of the Dirichlet preconditioner using approximate expressions for 𝑲𝑖𝑖

𝑠 of the Schur
complement 𝑺𝑠may also be used. Accordingly, these preconditioners can be used as values for matrix 𝑸 of projector 𝑷
in case of heterogeneous problems.

2.5.7 P-DDM for static analysis with D-DDM based preconditioners: The PFETI method

This section introduces a new category of preconditioners for the PSM originally proposed by Fragakis and
Papadrakakis [1]. An iterative solver is applied for the solution of the interface problem in order to compute the

interface displacement vector 𝒖𝑏, given an interface force vector �̂�𝑏. A good preconditioner for the PSM must treat

the k-th residual 𝒓𝒌 = �̂�𝒃 − �̂�𝒖𝒃
𝒌 as applied forces on the interface nodes of the structure and return in 𝒛𝒌 = �̃�−𝟏𝒓𝒌 a

good estimate of the interface displacements of the structure for the applied forces 𝒓𝒌. For instance, if the PSM
preconditioning step is performed with any solver, like for example the FETI method, the iterative solver will
immediately converge in the first iteration. The PFETI method consists of using as preconditioner of the PSM, a crude
approximation of the FETI solution and as such, the first estimate for the interface displacements of the structure
obtained from the first iteration of the FETI method is chosen.
For example, consider the FETI algorithm with an applied forces vector 𝒇equal to:

 𝒇 = 𝑵𝒃
𝑻𝒓𝒌

Since all forces in the load vector are applied on the interface nodes of the structure, we have 𝒇𝒃 = 𝒓𝒌 and 𝒇𝒊
𝒔 = 𝟎.

Furthermore, the interface forces 𝒇𝒃 may be split to the subdomains with the equation:

 𝒇𝒃
𝒔 = 𝑳𝒑𝒃

𝒇𝒃 = 𝑳𝒑𝒃
𝒓𝒌

Then, it follows that �̂�𝒃
𝒔 = 𝒇𝒃

𝒔 = 𝑳𝒑𝒃
𝒓𝒌. The components of 𝑒 and 𝑑 thus become 𝒆 = 𝑹𝒔𝑻

𝒇𝒔 = 𝑹𝒃
𝒔𝑻

𝒓𝒌 and 𝑑 =

𝑩𝑲𝒔+
𝒇𝒔 = 𝑩𝒃𝑺𝒔+

𝑳𝒑𝒃
𝒓𝒌. Moreover, with respect to interface values, matrix 𝑭𝑰 may be written as 𝑭𝑰 = 𝑩𝑲𝒔+

𝑩𝑻 =

𝑩𝒃𝑺𝒔+
𝑩𝒃

𝑻. Futhermore, the initial Lagrange multiplier vector 𝝀𝟎 is equal to:

 𝝀𝟎 = 𝑸𝑮(𝑮𝜯𝑸𝑮)
−𝟏

𝑹𝒃
𝒔𝑻

𝒓𝒌

The initial zero energy mode amplitude 𝒂𝟎 is equal to:

 𝒂𝟎 = −(𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸(𝒅 − 𝑭𝑰𝝀𝟎) = −(𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸𝑩𝒃𝑺𝒔+
(𝑳𝒑𝒃

𝒓𝒌 − 𝑩𝒃
𝑻𝝀𝟎)

and the interface displacements 𝒖𝑏0

 estimated from the initialization of the FETI method are:

𝒖𝒃𝟎
= 𝑳𝒑𝒃

𝑻 𝒖𝒃
𝒔

= 𝑳𝒑𝒃
𝑻 (𝑺𝒔+

(�̂�𝒃
𝒔 − 𝑩𝒃

𝑻𝝀𝟎) + 𝑹𝒃
𝒔 𝒂𝟎)

= 𝑳𝒑𝒃
𝑻 (𝑺𝒔+

(𝒓𝒌 − 𝑩𝒃
𝑻𝝀𝟎) − 𝑹𝒃

𝒔 (𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸𝑩𝒃𝑺𝒔+
(𝑳𝒑𝒃

𝒓𝒌 − 𝑩𝒃
𝑻𝝀𝟎))

= 𝑳𝒑𝒃
𝑻 (𝑰 − 𝑹𝒃

𝒔 (𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸𝑩𝒃) 𝑺𝒔+
(𝑳𝒑𝒃

𝒓𝒌 − 𝑩𝒃
𝑻𝝀𝟎)

= 𝑳𝒑𝒃
𝑻 (𝑰 − 𝑹𝒃

𝒔 (𝑮𝑻𝑸𝑮)
−𝟏

𝑮𝑻𝑸𝑩𝒃) 𝑺𝒔+
(𝑰 − 𝑩𝒃

𝑻𝑸𝑮(𝑮𝑻𝑸𝑮)
−𝟏

𝑹𝒃
𝒔𝑻

) 𝑳𝒑𝒃
𝒓𝒌

From the above equation, the PSM preconditioner is deduced:

DCoMEX Deliverable 3.2.
 Plan

 �̃�−𝟏 = 𝑳𝒑𝒃
𝑻 𝑯𝒃

𝑻𝑺𝒔+
𝑯𝒃𝑳𝒑𝒃

where

 𝑯𝒃 = 𝑰 − 𝑩𝒃
𝑻𝑸𝑮(𝑮𝑻𝑸𝑮)

−𝟏
𝑹𝒃

𝒔 𝑻

DCoMEX Deliverable 3.2.
 Plan

3. AI accelerated Iterative Solvers for parameterized problems
The applications of the DCoMEX project, as described in Work Package 7, involve the modelling of tumor growth during
immunotherapy treatment and the design of high-performance composite materials. Both these applications are
described by a complex set of PDEs and are parametrized either by random variables (forward/inverse UQ analysis)
and/or design variables (optimization). The solution to these problems requires massive number of problem simulations
for various instances of the problem parameters. The computational cost of this task is computationally unaffordable,
even with the use of the advanced iterative algorithms mentioned in the previous section. To overcome this problem,
a set of algorithms has been developed so far that combine advanced linear algebraic solvers with ML algorithms to
accelerate the solutions to these complex problems.

3.1 Data-driven solution framework-POD-2G solver
The POD-2G algorithm has been developed in the context of the DCoMEX project in the effort to accelerate the solution
process of large-scale parameterized systems [2]. It consists of the following three steps:

Step 1: Development of a surrogate model using convolutional neural networks and autoencoders
In this step, a small yet sufficient number of parameter instances 𝜽𝑖 for 𝑖 = 1, … , 𝑁 , is generated and it is fed as input
to the governing PDE of the problem. Then, using a discretization scheme, the corresponding high-fidelity solutions 𝒖𝑖 ∈

𝑅𝑑 for 𝑖 = 1, … , 𝑁, are obtained. For a detailed numerical model 𝑑 is very large number and this poses significant
challenges when trying to establish a direct mapping from the problem’s parametric space to its solution space. To
tackle this, we will employ the tools developed in WP2 of the project, namely the CAE-based surrogate model illustrated
in figures 3.

Figure 3: A schematic representation of the surrogate’s construction phase: (A) Generation of training samples by

solving the high-fidelity numerical model for different parameter instances, (B) Learning of a low-dimensional
representation for the data set and a corresponding reconstruction map using a CAE, (C) Learning a mapping from the

parameter space to the encoded space using a feedforward neural network.

DCoMEX Deliverable 3.2.
 Plan

According to this figure, the CAE is trained over the initial high dimensional data set of {𝒖𝑖}, in order to learn a low

dimensional representation denoted with {𝒛𝑖}, with 𝒛𝑖 ∈ 𝑅𝑙 , 𝑙 ≪ 𝑑 and then learn how to minimize the objective
function

𝐿𝑜𝑠𝑠𝐶𝐴𝐸 =
1

𝑁
∑ ‖𝒖𝒊 − �̃�𝒊 ‖

𝑁

𝑖=1

with �̃�𝑖 being the reconstructed input. Next, the FFNN is used to establish a nonlinear mapping form the parametric

space of 𝜽 ∈ 𝑅𝑛 to the latent space 𝒛 ∈ 𝑅𝑙, by minimizing the loss function

𝐿𝑜𝑠𝑠𝐹𝐹𝑁𝑁 =
1

𝑁
∑ ‖𝒛𝒊 − �̃�𝒊 ‖

𝑁

𝑖=1

with �̃�𝑖 = 𝐹𝐹𝑁𝑁(𝜽𝑖) being the network’s output.
 Based on this surrogate modeling scheme, for a new parameter instance 𝜽𝑗 , the system’s solution can be

obtained as:

𝒖𝑗 = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (𝐹𝐹𝑁𝑁(𝜽𝑗)) : = 𝐹𝑠𝑢𝑟(𝜽𝑗)

as shown in figure 4.

Figure 4: A schematic representation of the surrogate online (prediction) phase

Step 2: Development of a multigrid-inspired POD solver, POD-2G
The solution vectors 𝒖𝑖 that have already been collected in the previous step, are utilized once more to obtain a set of
reduced basis vectors by applying the Proper Orthogonal Decomposition (POD) method on the solution matrix 𝑼 =

[𝒖1, 𝒖2, … , 𝒖𝑁]. By denoting with 𝜱𝑟 ∈ 𝑅𝑑×𝑟 the matrix of the 𝑟 most energetic modes of POD, then the high-
dimensional system solutions 𝒖 can be approximated as 𝒖 = 𝜱𝑟𝒖𝑟, with 𝒖𝑟 ∈ 𝑅𝑟 being the unknown coefficients of
the projection on the truncated POD basis. Next, we exploit the similarity between the two-level AMG and the POD
method, under the identification of 𝜱𝑟 as the prolongation operator and 𝜱𝑟

𝑇 the corresponding restriction. By
appropriately modifying the AMG algorithm, we obtain the POD-2G algorithm, illustrated below.

DCoMEX Deliverable 3.2.
 Plan

Step 3: Proposed data-driven framework
The final step is to combine the surrogate model of step 1 and POD-2G solver of step 2 into a single solution pipeline. In
particular, for each new parameter instance 𝜽, a highly accurate approximation of the system’s solution is obtained as
𝐹𝑠𝑢𝑟(𝜽) . If we denote with 𝒖⋆ the exact solution, then the surrogate’s error will be 𝑒𝑠𝑢𝑟 = ‖𝒖⋆ − 𝐹𝑠𝑢𝑟(𝜽)‖, which,
despite one’s best efforts will now be equal to zero. At this point, we will utilize the POD-2G iterative scheme to refine
the surrogate’s prediction to any desired level of accuracy. This approach is expected to drastically reduce the
computational cost of solving the system due to good initial prediction 𝐹𝑠𝑢𝑟(𝜽) and the fact that POD-2G requires
fewer iterations to converge than other conventional solvers. This procedure is summarized in the following algorithm:

3.2 Fusing nonlinear solvers with transformers for accelerating parameterized
transient problems

A second methodology that has been developed so far, is aimed at accelerating the solution to nonlinear transient
problems using state-of-the-art machine learning tools. In particular, the proposed approach harnesses the power of
cutting-edge Temporal Fusion Transformers (TFTs) to accelerate the solution of such problems in multi-query scenarios.
At each time step of the transient problem, TFT models, renowned for their time series forecasting capabilities, are
combined with dimensionality reduction techniques to efficiently generate initial solutions for nonlinear solvers.

DCoMEX Deliverable 3.2.
 Plan

Specifically, during the training phase, a reduced set of high-fidelity system solutions is obtained by solving the system
of differential equations governing the problem for different parameter instances. Then, dimensionality reduction is
applied to create a reduced latent space to simplify the representation of the complex system solutions. Subsequently,
TFT models are trained for one-step-ahead forecasting in the latent space, utilizing information from previous states to
make accurate predictions about future states. The TFTs' predictions are fed back to the system as initial guesses at
each time step of the solution algorithm and are then guided towards the exact solutions that satisfy equilibrium using
Newton-Raphson (NR) iterations. The basic premise of the proposed idea is that having accurate initial predictions will
significantly decrease the number of the costly NR-iterations needed in nonlinear dynamic problems, effectively
reducing the solution time.

The proposed algorithm consists of the following steps:

Step 1: Training phase

A training data set, denoted as 𝑼𝑡𝑟𝑎𝑖𝑛 = {𝑼𝑖}𝑖=1
𝑁𝑡𝑟𝑎𝑖𝑛, with 𝑼𝑖 = [𝒖𝑖,𝑡0

, … , 𝒖𝑖,𝑡𝑁𝑇
] ∈ 𝑅𝑑×𝑁𝑇 , 𝑁𝑇 being the total number of

time steps, is initially generated by performing 𝑁𝑡𝑟𝑎𝑖𝑛 simulations of the high-fidelity model for different parameter

instances {𝜃𝑖}𝑖=1
𝑁𝑡𝑟𝑎𝑖𝑛 (see figure 5).

Figure 5: Generation of training data set

Since TFTs are rather resource-intensive networks, it is pivotal that the number of original space dimensions is reduced.
In this regard, a dimensionality reduction algorithm is employed, particularly Principal Component Analysis (PCA), since

it was proven to be sufficient and performant. We utilize two instances of the PCA algorithm: first, 𝑃𝐶𝐴𝑢: 𝑅𝑑 → 𝑅𝑑𝑃𝐶𝐴
is fitted to the previously generated dataset, as shown in Fig. 6, mapping the original-space solutions to their latent-

space projections denoted as 𝒚 = 𝑃𝐶𝐴𝑢(𝒖). Similarly, a second PCA, namely 𝑃𝐶𝐴𝑥: 𝑅𝑑 → 𝑅𝑑𝑃𝐶𝐴, is fitted to the

parameters 𝐗𝑡𝑟𝑎𝑖𝑛 associated with solutions 𝑼𝑡𝑟𝑎𝑖𝑛, where 𝐗𝑡𝑟𝑎𝑖𝑛 = {𝐗i}𝑖=1
𝑁𝑡𝑟𝑎𝑖𝑛, with 𝑿𝑖 = [𝐱𝑖,𝑡0

, … , 𝐱𝑖,𝑡𝑁𝑇
] ∈ 𝑅𝑑×𝑁𝑇 are

the external loading values in the problem. Then, 𝒙 = 𝑃𝐶𝐴x(𝐱) transforms the external loading vectors to their reduced
space projections.

DCoMEX Deliverable 3.2.
 Plan

Figure 6: Dimensionality reduction with separate PCA fits for the displacement and excitation time-series 𝑼𝒊 and 𝐗𝑖,

respectively.

Subsequently, a separate, scalar 𝑇𝐹𝑇𝑗 model is trained on each latent-space component for 𝑗 = 1, … , 𝑑𝑃𝐶𝐴 resulting in

a total of 𝑑𝑃𝐶𝐴 networks with identical architecture. At timestep 𝑡, each network 𝑇𝐹𝑇𝑗 has access to a past 𝑘-length

window (𝑦𝑡−𝑘:𝑡
(𝑗)

, 𝑥𝑡−𝑘:𝑡
(𝑗)

), containing previous latent-space solutions and their corresponding parameters, and directly

tries to predict only the next scalar term of the time series 𝑦𝑡+1
(𝑗)

, as shown in figure 7.

Figure 7: Proposed architecture during training.

DCoMEX Deliverable 3.2.
 Plan

Step 2: Prediction phase
As illustrated in figure 8, the proposed inference scheme consists of four phases. Initially, two separate low-dimensional
projections are applied to fixed time windows containing instances of previous solutions and their associated
parameters, respectively. Subsequently, scalar-output TFTs are employed to forecast future values in each reduced
dimension. Following the predictions, the results are restored to the original solution space and iteratively refined until
a predefined error threshold is met. Finally, each refined solution is reused for the subsequent prediction.

Figure 8: Proposed architecture for inference.

DCoMEX Deliverable 3.2.
 Plan

4. Contents of the AI-Solve software library
This section details the content and functionalities of the AI-Solve library that was developed within the project. All
project related software implementations can be found in https://github.com/mgroupntua, and are publicly available.

4.1 Linear algebra repository
The linear algebra public repository (https://github.com/mgroupntua/LinearAlgebra) includes implementations and
wrappers for linear operations in C# and in the context of the DCoMEX project the following algorithms have been
developed:

• The Gauss-Seidel iterative algorithm:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/GaussSeid
el/GaussSeidelAlgorithm.cs

• The conjugate gradient method:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Conjugate
Gradient/CGAlgorithm.cs

• The preconditioned conjugate gradient method:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Preconditi
onedConjugateGradient/PcgAlgorithm.cs

• The block preconditioned conjugate gradient method:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Preconditi
onedConjugateGradient/BlockPcgAlgorithm.cs

• The generalized minimal residual method (GMRES):
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Generalize
dMinimalResidual/GmresAlgorithm.cs

• The algebraic multigrid method:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Algebraic
MultiGrid/AlgebraicMultiGrid.cs

• The Proper Orthogonal Decomposition algorithm:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Algebraic
MultiGrid/PodAmg/ProperOrthogonalDecomposition.cs

• The POD-2G method described in section 3.1 to be used as a standalone iterative solver:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Algebraic
MultiGrid/PodAmg/PodAmgAlgorithm.cs

• The POD-2G method described in section 3.1 to be used as a preconditioner in the context of CG:
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/Algebraic
MultiGrid/PodAmg/PodAmgPreconditioner.cs

The verify the correct implementation of these algorithms several numerical tests are included in this repository that
can be found in https://github.com/mgroupntua/LinearAlgebra/tree/develop/tests/MGroup.LinearAlgebra.Tests

4.2 Solvers repository
The Solvers public repository (https://github.com/mgroupntua/Solvers) utilizes the linear algebra algorithms to solve
linear systems of equations arising from engineering problems. The Solvers repository acts as a mediator between the
LinearAlgebra repo and MSolve modules, making the proper connections and associations between the discretization
processes of the PDEs to be solved and the actual linear algebra objects that are used for solving the emerging linear
systems. Moreover, the Solvers repo has all necessary information, in order to compose problem-specific
preconditioners and solution strategies.

• PCG solver: https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers/Iterative/PcgSolver.cs

• Block PCG solver:
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers/Iterative/BlockPcgSolver.cs

• GMRES solver:
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers/Iterative/GmresSolver.cs

https://github.com/mgroupntua
https://github.com/mgroupntua/LinearAlgebra
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/GaussSeidel/GaussSeidelAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/GaussSeidel/GaussSeidelAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/ConjugateGradient/CGAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/ConjugateGradient/CGAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/PreconditionedConjugateGradient/PcgAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/PreconditionedConjugateGradient/PcgAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/PreconditionedConjugateGradient/BlockPcgAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/PreconditionedConjugateGradient/BlockPcgAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/GeneralizedMinimalResidual/GmresAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/GeneralizedMinimalResidual/GmresAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/AlgebraicMultiGrid.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/AlgebraicMultiGrid.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/PodAmg/ProperOrthogonalDecomposition.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/PodAmg/ProperOrthogonalDecomposition.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/PodAmg/PodAmgAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/PodAmg/PodAmgAlgorithm.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/PodAmg/PodAmgPreconditioner.cs
https://github.com/mgroupntua/LinearAlgebra/blob/develop/src/MGroup.LinearAlgebra/Iterative/AlgebraicMultiGrid/PodAmg/PodAmgPreconditioner.cs
https://github.com/mgroupntua/LinearAlgebra/tree/develop/tests/MGroup.LinearAlgebra.Tests
https://github.com/mgroupntua/Solvers
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers/Iterative/PcgSolver.cs
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers/Iterative/BlockPcgSolver.cs
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers/Iterative/GmresSolver.cs

DCoMEX Deliverable 3.2.
 Plan

• POD-2G solver:
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers.MachineLearning/PodAmg/AmgA
ISolver.cs

The family of DDM algorithms is currently at a seperate repository
(https://github.com/SerafeimBakalakos/MSolveOne/tree/paper/xfem_pfetidp_mpi) and will be integrated in the
main code in the following months. All DDM algorithms described in sections 2.5.5-2.5.7 can be found in:

• P-DDM (or PSM):
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM
/PSM/PsmSolver.cs

• Feti-DP :
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM
/FetiDP/FetiDPSolver.cs

• P-Feti-DP:
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM
/PFetiDP/PFetiDPSolver.cs

4.3 Machine learning repository
The MachineLearning public repository (https://github.com/mgroupntua/MachineLearning) contains the different
types of neural networks that were implemented and used for the project’s purposes. These include:

• Feedforward Neural Networks:
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/
NeuralNetworks/FeedForwardNeuralNetwork.cs

• Convolutional Neural Networks:
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/
NeuralNetworks/ConvolutionalNeuralNetwork.cs

• Autoencoders:
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/
NeuralNetworks/Autoencoder.cs

• Convolutional Autoencoders:
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/
NeuralNetworks/ConvolutionalAutoencoder.cs

Based on these building blocks, the customized surrogate modeling technique mentioned in D2.3 that combines
FFNN and CAEs to provide predictions for complex systems (step 1 of the data-driven solution framework in
Section 3.1) can be found in
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.Constitutive.Structural.MachineLea
rning/Surrogates/CaeFffnSurrogate.cs

In addition, dedicated surrogate modeling techniques were developed to accelerate the DCoMEX-Mat applications
in WP 7. These include neural networks that emulate the constitutive behavior of composite materials and can be
found in:
https://github.com/mgroupntua/MachineLearning/tree/develop/src/MGroup.Constitutive.Structural.MachineLea
rning/Continuum

4.4 AISolve.core repository
AISOLVE.core (https://github.com/mgroupntua/AISolve.Core/tree/develop/src) is a collection of interfaces and classes
for the workflow definition of AISolve. AISolve has been designed in a fashion allowing for the interconnection of
heterogeneous software modules that will tackle the solution of the various phases of the AISolve workflow.

4.5 AISolve.MSolve repository
AISolve.MSolve repository (https://github.com/mgroupntua/AISolve.MSolve) is the MSolve implementation of
AISolve.Core interfaces and workflow. Specifically, this repository implements all the interfaces defined in the

https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers.MachineLearning/PodAmg/AmgAISolver.cs
https://github.com/mgroupntua/Solvers/blob/develop/src/MGroup.Solvers.MachineLearning/PodAmg/AmgAISolver.cs
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM/PSM/PsmSolver.cs
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM/PSM/PsmSolver.cs
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM/FetiDP/FetiDPSolver.cs
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM/FetiDP/FetiDPSolver.cs
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM/PFetiDP/PFetiDPSolver.cs
https://github.com/SerafeimBakalakos/MSolveOne/blob/paper/xfem_pfetidp_mpi/src/MGroup.Solvers.DDM/PFetiDP/PFetiDPSolver.cs
https://github.com/mgroupntua/MachineLearning
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/FeedForwardNeuralNetwork.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/FeedForwardNeuralNetwork.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/ConvolutionalNeuralNetwork.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/ConvolutionalNeuralNetwork.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/Autoencoder.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/Autoencoder.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/ConvolutionalAutoencoder.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.MachineLearning.TensorFlow/NeuralNetworks/ConvolutionalAutoencoder.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.Constitutive.Structural.MachineLearning/Surrogates/CaeFffnSurrogate.cs
https://github.com/mgroupntua/MachineLearning/blob/develop/src/MGroup.Constitutive.Structural.MachineLearning/Surrogates/CaeFffnSurrogate.cs
https://github.com/mgroupntua/MachineLearning/tree/develop/src/MGroup.Constitutive.Structural.MachineLearning/Continuum
https://github.com/mgroupntua/MachineLearning/tree/develop/src/MGroup.Constitutive.Structural.MachineLearning/Continuum
https://github.com/mgroupntua/AISolve.Core/tree/develop/src
https://github.com/mgroupntua/AISolve.MSolve

DCoMEX Deliverable 3.2.
 Plan

AISolve.Core repository and connects it with the appropriate MSolve modules for the solution of engineering problems
with the aid of AISolve.

DCoMEX Deliverable 3.2.
 Plan

5. Numerical Applications
5.1 Accelerating crack propagation problems using DDM
The extended finite element method (XFEM) is one of the most popular methods to simulate fracture phenomena.
However, this approach requires the solution of large-scale systems that are often ill-conditioned and thus require
specialized iterative solving techniques. In [3] several variants of Domain Decomposition Methods, which were
implemented in the context of DCoMEX and are part of the AI-Solve library, were examined and their computational
merits were showcased.
 The problem under investigation involves a crack propagating in a beam supported at three points and loaded
at a fourth point, as illustrated in figure 9.

Figure 9: 4-point bending beam test case. Geometry, boundary conditions and initial configuration of the crack surface

(dimensions in mm)

The material properties are 𝐸 = 3 ⋅ 107 𝑁

𝑚𝑚2 , 𝑣 = 0.3 and the applied load is 𝐹 = 1000 𝑁. The dimensions of the beam,

the placement of supports and load and the initial configuration of the crack surface are given in the figure. It is assumed
that the crack propagates in a quasi-static manner with a constant increment, until it reaches the boundary of the
domain and collapse occurs after 13 propagation steps. The whole analysis is repeated for various mesh densities, with
each mesh consisting of 8-node hexahedral elements. The initial and final number of dof for each mesh are listed in the
table below:

Mesh dof at first step dof at last step

45 x 10 x 5 9,492 9,816

90 x 20 x 10 64,130 65,384

135 x 30 x 15 204,336 206,880

180 x 40 x 20 470,820 475,419

225 x 50 x 25 903,812 910,832

270 x 60 x 30 1,537,228 1,548,295

315 x 70 x 35 2,431,872 2,444,940

Table XX: Number of dof per mesh. The difference in dof between the first and last step of the crack propagation
analysis is due to the mesh enrichment required by XFEM to capture the crack’s advancing front

To test the performance of the DDM methods, the following cases were considered: Dirichlet preconditioned FETI-DP
(abbreviated as FETI-DP-D), lumped-preconditioned FET-DP (abbreviated as FETI-DP-L), and the P-FETI-DP. The
improved versions of the these methods using re-initializations techniques for crack propagation problems are denoted
as FETI-DP-D-I, FETI-DP-L-I and P-FETI-DP-I. The speedup each of these methods achieved is compared to supernodal
sparse Cholesky factorization direct solver [4]. The results of these analyses are presented in figure 10.

DCoMEX Deliverable 3.2.
 Plan

Figure 10: Performance comparison of the DDM solvers for the 4-point bending beam problem: (a) Computing time (in

seconds), (b) speedup of the solvers relative to the supernodal Cholesky solver.

As evidenced by the results in figure 10, all DDM methods exhibit superior computational performance in comparison
with the direct solver and the PCG method. Also, the P-FETI-DP and its improved version P-FETI-DP-I were the most
efficient solution techniques from the family of DDM methods.

5.2 Solution to the parameterized Biot problem using POD-2G
The data-driven solution framework that described in section 3.1 and developed in the context of the DCoMEX
problem was employed to solve a parameterized version of the Biot problem (deformable porous medium) based on
the 𝑢 − 𝑝 formulation [2]. The problem under investigation involves a 3D solid cube under prescribed displacement
and pressure boundary conditions, as shown in figure 11.

Figure 11: Geometry, boundary conditions and FE discretization of the Biot problem

We assumed for this problem that the Lame coefficients 𝜇 and 𝜆 are random variables following the distributions
given in table 1. As a first step, the Latin Hybercube sampling method was utilized to generate 𝑁𝑡𝑟𝑎𝑖𝑛 = 300

parameter samples {𝜇𝑖 , 𝜆𝑖}𝑖=1
𝑁𝑡𝑟𝑎𝑖𝑛. The surrogate’s architecture is presented in Figure 12. The CAE is trained for 100

epochs with a batch size of 10 and a learning rate of 10-3, while the FFNN is trained for 5000 epochs with a batch size
of 20 and a learning rate of 10-4. The average normalized l2 norm error of the surrogate model in the test data set is
0.68%.

Parameter Distribution Mean Standard deviation

𝜇 (𝑀𝑃𝑎) Lognormal 0.30 0.09

𝜆 (𝑀𝑃𝑎) Lognormal 1.70 0.51

Table 1: Random parameters of the Biot problem

DCoMEX Deliverable 3.2.
 Plan

Figure 12: Surrogate model architecture

Subsequently, a number of 𝑁𝑡𝑒𝑠𝑡 parameter vectors {{𝜇𝑖 , 𝜆𝑖}𝑖=1
𝑁𝑡𝑒𝑠𝑡were generated according to their distribution and

the corresponding problems were solved with the proposed POD-based solver and different Ruge-Stüben AMG
solvers, with the number of grids ranging from 2 to 6. The size of the system of equations at the coarsest level for each
of these solvers is presented in Table 2. For this example, eight eigenvectors were retained in the POD expansion, as
these were sufficient for capturing 99.99% of the dataset’s variance.

Table 2: Size of the problem at the coarsest grid for the different solvers

The mean value of the CPU time and the number of cycles required for convergence to the desired value of tolerance
are displayed in Figure 13 and Table 3. The results are very promising in terms of computational cost. For instance, for

𝜀 = 10−5 and 𝒖(0) = 𝟎, a reduction of computational cost of ×7.32 is achieved when comparing the proposed solver

with the 3-grid AMG solver. Furthermore, obtaining an accurate initial solution 𝒖(0) is again a very important component

of the proposed framework. Specifically, by considering 𝒖(0) = 𝒖𝑠𝑢𝑟 instead of 𝒖(0) = 𝟎 for 𝜀 = 10−5, an additional
decrease in CPU time of ×4.31 can be achieved.

Figure 13: Comparison of mean CPU time and mean number of cycles over 500 analyses for different multigrid solvers

DCoMEX Deliverable 3.2.
 Plan

Table 3: Computational speedup of solvers compared to AMG-3G

The convergence behavior of the proposed method when used as a preconditioner in the context of the PCG method
is presented in Figure 14. Again, the results delivered by the proposed methodology showed its superior performance

not only over AMG preconditioners but also over ILU and Jacobi preconditioners. In this case, for 𝜀 = 10−5 and 𝒖(0) =
𝟎, a reduction of computational cost of ×2.37 is observed between the proposed method and the 3-grid AMG, of
×1.63 with the ILU and of ×1.16 with the Jacobi. Last but not least, the initial solution delivered by the surrogate

model, 𝒖(0) = 𝒖𝑠𝑢𝑟, managed to further reduce the computational time by ×2.12 when compared to POD-2G with

𝒖(0) = 𝟎 (See Table 4).

Figure 14: Comparison of mean CPU time and mean number of PCG iterations over 500 analyses for different

preconditioners

Table 4: Computational speedup of different preconditioners compared to the AMG-3G preconditioner

5.3 Accelerating the nonlinear analysis of water tower under random base
excitation

The data-driven solution framework developed in Section 3.2 of the deliverable was employed in [5] to reduce the cost
for nonlinear transient analysis of a water tower under random base excitation. In this example, the water tower shown
in figure 15 is initially subjected to a series of monochromatic seismic ground accelerations of the form 𝒑𝑒𝑥𝑡 = −𝑴 ⋅ 𝟏𝑑 ⋅
𝐴 ⋅ 𝑠𝑖𝑛(𝜃 ⋅ 𝑡), where 𝑴 is the mass matrix, 𝟏𝑑 is the excitation’s directivity vector, 𝐴 is an amplitude modifier and 𝜃 is
the angular frequency of the excitation, which is considered a system parameter ranging from 0 to 0.5 . The structure’s
model consists of 4104 tetrahedral elements and 1767 nodes corresponding to d = 5241 degrees of freedom.

DCoMEX Deliverable 3.2.
 Plan

Figure 15: Water tower geometry and finite element discretization

Initially, the response of the structure is calculated for 𝑁𝑡𝑟𝑎𝑖𝑛 separate angular frequency values considering zero initial
conditions for each performed analysis. The second step of the proposed framework is to start by conducting a PCA
analysis and evaluate how the captured variance changes as the number of principal components increases. After
careful observation, we opted to choose the first 𝑑𝑃𝐶𝐴 = 9 components as they effectively retained 99.98% of the
original variance for both the solution and the related force vector space.

Following that, we proceeded to train nine distinct scalar-valued TFTs for a total of 2000 epochs. Each TFT corresponded
to one of the latent space dimensions that were derived. The models were trained to generate one-step-ahead
forecasts, where the value 𝑘 of the length of the look-back window was set to 16. Their performance on the training
dataset is summarized in Table 5. Figure 16 illustrates the performance of the TFTs' prediction on the temporal evolution
of the 9 PCA components over time for the sample 𝜃 in the training data set with the median test percentage error.

Performance % training error

Overall % loss 0.2813

Best sample 0.1804

Worst sample 0.7579

Table 5: Percentage training error

DCoMEX Deliverable 3.2.
 Plan

Figure 16: Performance of the TFTs’ prediction on the temporal evolution of the 9 PCA components over time for the

sample 𝜃 in the training data set with the median test percentage error.

The next step was to generate artificial ground motions that resemble actual earthquakes using the Spectral
Representation method [6]. Then, to test the performance of the previously trained surrogate model on this more
challenging scenario, we conducted 1200 simulations of the FE model for different ground motions using the surrogate’s
predictions as input to the FE nonlinear solver. We observed a noticeable reduction in the average values of NR
iterations needed, as shown in table 6, even though the surrogate wasn't trained on this type of excitations.

Table 6: Extrapolation Performance on the earthquake time series: The right column illustrates the average iteration
count for our solver to converge, utilizing surrogate’s predictions as initial solutions. These averages are calculated
across time series where the number of iterations needed prior to employing our approach corresponds to the values
in the left column, highlighting our approach’s effectiveness in handling multiple-frequency time series.

DCoMEX Deliverable 3.2.
 Plan

In addition, figure 17 shows the average number of iterations per time step for 1200 simulations with and without the
use of the surrogate. In this test case, the average number of iterations per simulation without the use of the surrogate
was 1246.88 and the total number of iterations was 1496256 for the 1200 simulations. However, using the surrogate's
predictions as initial solutions, we managed to drop these numbers to 576,13 and 691356, respectively, as shown in
figure 18. These results provide a strong indication that the TFT models are able to learn the system's dynamics in the
latent space and can extrapolate beyond the training data set.

Figure 17: Per timestep comparison on the earthquake timeseries

Figure 18: Extrapolation Results on the earthquake time series: This figure compares convergence metrics before and

after applying our methodology, showcasing the contrast in average iterations for individual time series on the left
and the total iterations for the entire dataset on the right

DCoMEX Deliverable 3.2.
 Plan

6. Summary and future work
In this report, the software implementations regarding the AI-Solve library were presented, in accordance with WP3 of
the proposal. These included (i) a set of state-of-the-art algorithms for solving large scale linear systems, along with
parallelizable versions (e.g. block PCG, DDM), (ii) two novel algorithms that combine the aforementioned solvers with
machine learning to tackle parameterized problems and (iii) a set of numerical applications that demonstrate the
capabilities of the AI-Solve library for handling challenging problems from the field of computational mechanics.

Further improvement of the software and extension of its capabilities is an ongoing process that will last until the project
end and after. These, among others include integration of a family of domain decomposition methods, further
optimization of its performance with (i) scalable sparse computations and (ii) communication optimization techniques
and utilization of the AI-Solve software to accelerate the applications described in WP7 (DCoMEX-BIO and DCoMEX-
MAT)

DCoMEX Deliverable 3.2.
 Plan

References
1. Y. Fragakis and M. Papadrakakis, "The mosaic of high performance domain decomposition methods for

structural mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods,"

Computer Methods in Applied Mechanics and Engineering, 2003.

2. S. Nikolopoulos, I.Kalogeris, G. Stavroulakis, V. Papadopoulos, “AI-Enhanced iterative solvers for accelerating
the solution of large-scale parametrized systems”, International Journal of Numerical Methods in Engineering,
2023

3. S. Bakalakos, M. Georgioudakis, M. Papadrakakis, “Domain decomposition methods for 3D crack propagation
problems using XFEM”, Computer Methods in Applied Mechanics and Engineering, 2022.

4. Y. Chen, T.A. Davis, W.W. Hager, S. Rajamanickam, “Algorithm 887: CHOLMOD, supernodal sparse Cholesky
factorization and update/downdate”, ACM Trans. Math. Software, 2008.

5. L. Papadopoulos, K. Atzarakis, G. Sotiropoulos, I. Kalogeris, V. Papadopoulos, “Fusing nonlinear solvers with
transformers for accelerating the solution of parametric transient problems”, Computer Methods in Applied
Mechanics and Engineering, 2024 (under review)

6. M. Shinozuka, G. Deodatis, “Simulation of Stochastic Process by Spectral Representation”, Applied Mechanics
Reviews, 1991

