
DCoMEX - 956201

Data driven Computational Mechanics at EXascale

Data driven Computational Mechanics at EXascale

Work program topic: EuroHPC-01-2019
Type of action: Research and Innovation Action (RIA)

Report on DMAP and CAE-based surrogate models

DELIVERABLE D2.2

Version No 1

http://www.dcomex.eu/
This project has received funding from the European High-Performance Computing Joint
Undertaking Joint Undertaking ('the JU'), under Grant Agreement No 956201

Ref. Ares(2023)3352156 - 12/05/2023

http://www.dcomex.eu/

DCoMEX D2.2
 Plan

2

D OC U ME N T SU MMA RY I N F ORMA T I ON

Project Title Data driven Computational Mechanics at EXascale

Project Acronym DCoMEX

Project No: 956201

Call Identifier: EuroHPC-01-2019

Project Start Date 01/04/2021

Related work package WP 2

Related task(s) Task 2.2

Lead Organisation NTUA

Submission date 08/05/2023

Re-submission date

Dissemination Level PU

Quality Control:

 Who Affiliation Date

Checked by internal
reviewer

George Stavroulakis NTUA 08/05/2023

 Checked by WP Leader Vissarion Papadopoulos NTUA 08/05/2023

Checked by Project
Coordinator

Vissarion Papadopoulos NTUA 08/05/2023

Document Change History:

Version Date Author (s) Affiliation Comment
1.0 06.05.2023 Ioannis Kalogeris NTUA

DCoMEX D2.2
 Plan

Table of Contents
Description .. 4

The diffusion maps algorithm .. 4

Theoretical background .. 4

 Diffusion maps with variable-bandwidth kernels .. 5

 Algorithmic implementation in the MSolve software ... 6

 Surrogate modeling scheme using diffusion maps and neural networks .. 7

Convolutional autoencoders ... 9

Theoretical background .. 9

 Algorithmic implementation in the MSolve software ... 11

 Surrogate modeling scheme using diffusion maps and neural networks .. 14

DCoMEX D2.2
 Plan

1 Description

Deliverable 2.2 is associated to WP2 “Surrogate modelling” of the DCoMEX project, and it provides a comprehensive
report on the development of a novel surrogate modeling scheme based on the diffusion maps algorithm (DMAP). In
the amended version of the proposal, an equivalent methodology has been proposed to build surrogate models of
complex systems which relies on convolutional autoencoders (CAEs) instead of the DMAP algorithm. Both algorithms
perform the same operation, each with its own merits and shortcomings, therefore two distinct surrogate modeling
strategies were developed within DCoMEX and presented herein. The outline of the deliverable is the following: Section
2 illustrates the theoretical background behind the DMAP algorithm, its algorithmic implementation in the MSolve
software and a surrogate modeling strategy based on DMAP. In a similar fashion, Section 3 presents the basic idea of
CAEs, their algorithmic implementation in MSolve and the dedicated surrogate modeling strategy for complex
engineering problems.

2 The diffusion maps algorithm

2.1 Theoretical background
Let 𝑼 = [𝒖𝟏, ⋯ , 𝒖𝑵] be a data set consisting of vectors 𝒖𝒊 ∈ 𝑅𝑑, which can be seen as 𝑁 distinct realizations of an 𝑅𝑑-
valued random variable and sampled independently with density 𝑞(𝒖). Next, assume a connectivity measure 𝐾
between data pairs 𝒖𝑖 , 𝒖𝑗 such as the Gaussian kernel

𝐾ϵ(𝒖𝒊, 𝒖𝒋) = 𝑒𝑥𝑝 (
− (‖𝒖𝒊 − 𝒖𝒋‖

2
)

4𝜀
)

Next, a discrete approximation to the Laplacian 𝐿ε is constructed as follows:

 Estimate the densities 𝑞ε at the sample points 𝒖𝑖 as

𝑞ε(𝒖𝑖) =
1

𝑁
∑ 𝐾ε(𝒖𝑖, 𝒖𝑗)

𝑁

𝑗=1

 Normalize the previously defined kernel 𝐾ε as

𝐾ε̂(𝒖𝑖, 𝒖𝑗) =
𝐾ε(𝒖𝑖, 𝒖𝑗)

𝑞ε(𝒖𝑖)
α𝑞ε(𝒖𝑗)

α

Where for α = 1 the discrete Laplacian approximates the Laplace-Beltrami operator, while α = 1/2
approximates a diffusion operator.

 Estimate the new densities

𝑞ε̂(𝒖𝑖) =
1

𝑁
∑ 𝐾ε̂(𝒖𝑖, 𝒖𝑗)

𝑁

𝑗=1

 If we define the matrix 𝑲 = [𝐾𝑖𝑗] = 𝐾ε̂(𝒖𝑖, 𝒖𝑗) and the diagonal matrix 𝑫 = [𝐷𝑖𝑖] = 𝑞ε(𝒖𝑖), then the discrete

approximation of the weighted Laplacian is given by the expression:

DCoMEX D2.2
 Plan

𝑳ε =
𝑫−1𝑲 − 𝑰𝑵

ε

 The solution to the eigenvalue problem 𝑳ε𝛙 = λ𝛙 will produce the sequence of eigenvalues 0 = λ0 ≥ λ1 ≥ λ2 ≥
 ⋯ and right eigenvectors 𝛙𝑗 for the operator. In practice, only the first 𝑛 non-trivial eigenvectors are kept with 𝑛

obtained from the expression

𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛,𝑛≥2 (
λ1

λ𝑛
< 𝑡𝑜𝑙)

Then, the diffusion map operator Ψε: 𝑢 → 𝑅𝑛can be defined as

Ψε(𝒖) = [𝑒λ1εψ1(𝒖), 𝑒λ2εψ2(𝒖), … , 𝑒λ𝑛εψ𝑛(𝒖)]

2.2 Diffusion maps with variable-bandwidth kernels

In several data-driven applications, the samples follow some distribution which is unknown a priori. It is expected that
the samples belonging to the tails of the distribution will be fewer and, thus, there will be regions on the manifold that
will be more sparsely delineated. To address this issue in classical kernel methods the idea of the variable-bandwidth
(or self-tuning) kernels has been proposed and illustrated herein. The main differentiation with respect to the classical
DMAP algorithm lies in the form of the kernel used, which in this setting becomes:

𝐾ε
𝑉𝐵(𝒖𝒊, 𝒖𝒋) = 𝑒𝑥𝑝 (

− (‖𝒖𝒊 − 𝒖𝒋‖
𝟐

)

𝟒ερ(𝒖𝒊)ρ(𝒖𝒋)
)

Following the construction for the graph Laplacian of the previous sections, in this case the sample densities are

𝑞ε
𝑉𝐵(𝒖𝑖) = ∑

𝐾ε(𝒖𝑖, 𝒖𝑗)

ρ(𝒖𝑖)
𝑚

𝑁

𝑗=1

which are used to construct the kernel

𝐾ε,α
𝑉𝐵(𝒖𝑖, 𝒖𝒋) =

𝐾ε
𝑉𝐵(𝒖𝑖, 𝒖𝑗)

𝑞ε
𝑉𝐵(𝒖𝑖)

α𝑞ε
𝑉𝐵(𝒖𝑗)

α

Setting 𝑞ε,α
𝑉𝐵(𝒖𝑖) = ∑ 𝐾ε,α

𝑉𝐵(𝒖𝑖, 𝒖𝑗)𝑁
𝑗=1 , we can obtain the normalized kernel

𝐾ε,α
𝑉�̂�(𝒖𝑖, 𝒖𝑗) =

𝐾ε,α
𝑉�̂�(𝒖𝑖, 𝒖𝑗)

𝑞ε,α
𝑉𝐵(𝑢𝑖)

and the weighted Laplacian for this formulation becomes

𝐿ε,α
𝑉𝐵 (𝒖𝑖, 𝒖𝑗) =

𝐾ε,α
𝑉�̂�(𝒖𝑖, 𝒖𝑗) − δ𝑖𝑗

ερ(𝒖𝑖)
2

DCoMEX D2.2
 Plan

2.3 Algorithmic implementation in the MSolve software

The code for implementing the variable-bandwidth diffusion maps algorithm can be found in
https://github.com/mgroupntua/MSolve.MachineLearning 1. In particular, the C# class DiffusionMapsAlgorithm.cs in
the MGroup.MachineLearning folder implements the aforementioned procedure for an input data set. An example
illustrating the use of this class is provided in the MGroup.MachineLearning.Tests folder, called DMAPexample.cs.

In this particular example, an initial data set is considered which consists of 2000 points in 𝑅2, generated from a 2-
dimensional Gaussian distribution centered at zero with covariance 𝐶 = 0.04𝐼𝟚. Using the syntax outlined below, a
new object called DMAP from the DiffusionMapsAlgorithm class is generated, taking as input from the user a specified
set of variables. Then the method ProcessData() applies the DMAP algorithm and computes the member variables
DMAP.DMAPeigenvalues[⋅] and DMAP.DMAPeigenvalues[⋅].

 dataSet : the initial data set

 numberOfKNN: number of k-nearest neighbors used in the evaluation of the kernel 𝐾ε,α
𝑉𝐵(𝒖𝑖, 𝒖𝒋)

 numberOfKDE: number of k-nearest neighbors required to estimate the kernel parameter ε

 differentialOperator: 1 – Laplace Beltrami operator, 2- generator of grad systems

 numberOfEigenvectors: The number of eigenvectors requested by the user

The data used in this particular example are shown in figure 1, while figure 2 depicts the first 10 non-trivial DMAP
eigenvalues.

Figure 1: initial data samples

1 The code has originally been submitted in the repo https://github.com/YiannisKalogeris/MSolve.MachineLearning

DiffusionMapsAlgorithm DMAP = new DiffusionMapsAlgorithm(dataSet,

numberOfKNN, NNofKDE, differentialOperator, numberOfEigenvectors);

DMAP.ProcessData();

https://github.com/mgroupntua/MSolve.MachineLearning
https://github.com/YiannisKalogeris/MSolve.MachineLearning

DCoMEX D2.2
 Plan

Figure 2: The first 10 diffusion map eigenvalues

2.4 Surrogate modeling scheme using diffusion maps and neural networks
Consider the modeling of a parametrized physical system governed by partial differential equations:

𝜕𝑢(𝒙, 𝑡; 𝜽)

𝜕𝑡
+ ℒ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑓(𝒙, 𝑡; 𝜽), 𝒙 ∈ Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩

ℬ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑏(𝒙, 𝑡; 𝜽), 𝒙 ∈ 𝜕 Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩
ℭ[𝑢(𝒙, 0; 𝜽)] = 𝑐(𝒙; 𝜽), 𝒙 ∈ Ω, 𝜽 ∈ 𝛩

where 𝑢(𝒙, 𝑡; 𝜽) is the (scalar) field of interest, ℒ is a general differential operator that involves spatial derivatives and
𝑓(𝒙, 𝑡; 𝜽) is a source field. Also, ℬ is the operator for the boundary conditions defined on 𝜕Ω, ℭ is the operator for the
initial conditions of the problem at 𝑡 = 0 and 𝜽 ∈ Θ is the vector of the problem’s parameters.

The discrete solution to the above set of equations for a given parameter instance 𝜽 is obtained using numerical
discretization techniques, such as the finite element method. In the context of parametric simulations, a set of

parameter samples {𝜽𝒋}
𝑗

𝑁
 is initially generated and the discretized solution vectors 𝒖𝒋(𝑡𝑘) ∈ ℝ𝑑 corresponding to

each parameter instance 𝜽𝒋 and time instance 𝑡𝑘 are obtained through the numerical solution of the partial

differential equation.

Based on the above, the numerical solution of the PDE can be regarded as a nonlinear mapping from the parametric

space of ℝ𝑑. However, for a large-scale (𝑑 ≫ 1) nonlinear dynamic problem, solving the corresponding numerical model
can take significant computational resources and memory requirements. An intuitive approach to reduce this cost would
be to exchange this mapping with another one that will be adequately accurate and much faster to compute. For this
task, an feed-forward neural network, or FFNN for short trained over a reduced set of system solution would seem an
appealing choice. Nevertheless, a FFNN with such high-dimensional output translates to a massive number of network
parameters to be calibrated and the associated computational cost and memory demands would render this process
unprofitable.

Our approach to overcome this issue is by employing the DMAP algorithm in order to reduce the dimensionality of the
model’s output, which will allow us to efficiently train a FFNN that will map points from the parametric space to their
reduced representation in the DMAP space. Next, another mapping needs to established from the DMAP space to the
high-dimensional solution space that will reconstruct the system’s solutions from their reduced representations. For
this purpose, in our investigation we chose the Laplacian Pyramids interpolation algorithm. The steps for the algorithmic
implementation of the proposed procedure are outlined below.

1. Generate 𝑁 samples of the vector of random parameters 𝜽 and perform 𝑁 simulations. Collect the solutions at
𝑁𝑡 time increments to obtain the 𝑑 × 𝑁𝑡𝑟 matrix of solutions (snapshots) 𝑼 = [𝒖𝟏, 𝒖2, … , 𝒖𝑁𝑡𝑟

], where 𝑁𝑡𝑟 =

𝑁 × 𝑁𝑡 , 𝑁𝑡 being the total number of time steps in the problem.

DCoMEX D2.2
 Plan

2. Given the matrix 𝑼 of the 𝑁𝑡𝑟 distinct solutions, utilize the machinery provided by the diffusion maps algorithm

to a identify a low dimensional representation 𝒖 ∈ ℝ𝑑 → 𝒛 ∈ ℝ𝑛, with 𝑛 ≪ 𝑑.

3. Train a FFNN using {𝒆𝑖}𝑖=1
𝑁𝑡𝑟 = {(𝜽𝑗, 𝑡𝑘)}

1≤𝑗≤𝑁,1≤𝑘≤𝑁𝑡
 as input and the DMAP coordinates {𝑧𝑖}𝑖=1

𝑁𝑡𝑟 as output.

4. For a new vector of parameter values 𝒆 = (𝜽, 𝑡) utilize the previously trained FFNN nonlinear mapping to obtain
its image in the DMAP space as 𝐹𝐹𝑁𝑁(𝒆) = 𝒛 ∈ ℝ𝑛.

5. Solve the pre-image problem with the Laplacian pyramid interpolation scheme to obtain the solution 𝒖 =

𝐿𝑃(𝒛) ∈ ℝ𝑑

In the above, steps 1-3 constitute the offline (training) phase of the surrogate, while steps 4-5 are the online phase
and these can be repeated for as many parameter instances as required for the purposes of the analysis. A schematic
representation of the proposed surrogate modeling strategy is given in figure 3.

Fig 3. Concept of the proposed surrogate modeling strategy

DCoMEX D2.2
 Plan

3 Convolutional autoencoders
3.1 Theoretical background

The Autoencoder (AE) concept is regarded as a neural network that learns from an unlabeled data set in an
unsupervised manner. The aim of an AE is to learn a reduced representation for a set of data, known as encoding, and
then learn how to reconstruct the original input from the encoded input with the minimum possible error. The latter
part of the AE is called the decoder.

In particular, let 𝑿 be a subset of ℝd with 𝒙 ∈ 𝑿 denoting an element of the set. Then, the AE’s encoder and decoder
are defined as transition maps 𝜑, 𝜓 such that:

𝜑: 𝑿 ⊆ ℝd → 𝑯 ⊆ ℝl

𝜓: 𝜢 ⊆ ℝ𝑙 → 𝑿 ⊆ ℝd
𝜑, 𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜑,𝜓‖𝑿 − (𝜓𝜊𝜑)𝑿‖

with the dimension 𝑙 typically being much smaller than 𝑑.

Now, let us consider the simplest case, where the encoder has only one hidden layer. It takes an input 𝒙 ∈ ℝd and

sends it to 𝒉 = 𝜑(𝒙) ∈ ℝl with 𝒉 = 𝝈(𝑾𝒙 + 𝒃), 𝜎 being an activation function (e.g. tanh or ReLU), 𝑾 a weight matrix
and 𝒃 a bias vector. The image 𝒉 of 𝒙 is the latent or encoded representation of 𝒙 and 𝑯 is the latent or feature space.

The decoder’s task is to establish the reverse mapping 𝜓 that will reconstruct the input 𝒙, given its latent

representation 𝒉. Again, considering a one-hidden layer, the reconstructed point 𝒙 = 𝜓(𝒉) is given by: 𝒙 = �̃�(�̃�𝒉 +

�̃�), with �̃�, �̃�, �̃� being different than those of the encoder. Also, the network’s architecture selected for the encoder
can be different than that of the decoder and the number of hidden layers can be greater than one, leading to the so-
called deep AEs.

AEs are trained by a back propagation algorithm, which is the most commonly used algorithm for the training of NNs.
The training loss function becomes the reconstruction error between the input points 𝒙𝑖 and their respective output
𝒙�̃�, that is:

𝐿 =
1

𝑁
∑‖𝑥𝑖 − 𝑥�̃� ‖

𝑁

𝑖=1

Despite their powerful dimensionality reduction properties, AEs face significant challenges when dealing with very
high-dimensional inputs, due to the fact that the number of trainable parameters increases drastically with an
increase in the input’s dimensionality. In addition, AEs are not capable of capturing the spatial features of the input
(e.g. when dealing with images) nor the sequential information in the input (e.g. when dealing with sequence data).
To remedy these issues, a new type of AEs has emerged, that of convolutional autoencoders (CAEs). Similarly to AEs,
CAEs also consist of an encoder and a decoder that are trained to minimize the loss function, but they are built from
different layer types. Specifically, in CAEs the encoder part is built using a combination of convolutional layers, fully
connected layers, pooling layers and normalization layers, while the decoder is built from deconvolutional layers and
unpooling layers along with fully connected and normalization layers. Intuitively, CAEs can be viewed as extensions of
ordinary AEs in the same way that CNNs are extensions of FFNNs.

Convolutional layers take as input a 𝑛 − 𝐷 array 𝑴 and apply a filter (a.k.a kernel) 𝐹 of specified size to the elements
of 𝑴 in a moving window fashion. This process is schematically depicted in following figure.

DCoMEX D2.2
 Plan

FIG. 4: Schematic representation of a 2 − 𝐷 convolutional filter with strides 𝑠ℎ = 2 and 𝑠𝑣 = 2

To better clarify this process, let us consider a 2 − 𝐷 array 𝑴 = [𝑚𝑖𝑗] and its encoded version 𝑴𝑒𝑛𝑐 = [𝜇𝑖𝑗], called

feature map, which is obtained after applying a filter 𝑾 = [𝑤𝑖𝑗] of size 𝑓ℎ × 𝑓𝑤, moving with vertical stride 𝑠𝑣 and

horizontal stride 𝑠ℎ. The element 𝜇𝑖𝑗 of 𝑴𝑒𝑛𝑐 is given by the equation:

𝜇𝑖𝑗 = ∑ ∑ 𝑚𝑖′𝑗′ ⋅ 𝑤𝑢𝑣 + 𝑏

𝑓𝑤

𝑣=1

𝑓ℎ

𝑢=1

 𝑤𝑖𝑡ℎ 𝑖′ = 𝑖 × 𝑠𝑣 + 𝑢, 𝑗′ = 𝑗 × 𝑠ℎ + 𝑣

where 𝑏 is the bias term and 𝑤𝑢𝑣 is the element of the filter 𝑾 that gives the connection weight between elements of
𝑴𝑒𝑛𝑐 and the element of 𝑴 within the respective window. This layer architecture is significantly more economical
than that of a fully connected layer since the parameters involved are only the 𝑓ℎ × 𝑓𝑤 elements of the filter 𝑾 and
the bias term 𝑏. The filter parameters do not require to be manually defined, instead the convolutional layer will learn
the most appropriate filter for the task. Also, a convolutional layer can have multiple filters, in which case it outputs
one feature map 𝑴𝑘

𝑒𝑛𝑐 per each filter 𝑘. We shall write 𝑴𝑒𝑛𝑐 = 𝐶𝑜𝑛𝑣𝑁𝑁(𝑴) to denote the application of several
convolutional layers, with multiple filters each, to an array 𝑴.

On the other hand, a deconvolutional layer performs the reverse operation of convolution, called deconvolution, and
it is used to construct decoding layers. Their function is to multiply each input value by a filter elementwise. For
instance a 2D 𝑓ℎ × 𝑓𝑤 deconvolution filter maps a 1 × 1 spatial region of the input to an 𝑓ℎ × 𝑓𝑤 region of the output.
Thus, the filters learned in the deconvolutional layers create a basis used for the reconstruction of the inputs’ shape,
taking into consideration the required shape of the output. As before, a deconvolutional layer can have multiple
filters, while several deconvolutional layers can be stacked for building deep architectures. The decoding procedure
can be represented as: 𝑴 = 𝐷𝑒𝑐𝑜𝑛𝑣𝑁𝑁(𝑴𝑒𝑛𝑐).

Based on the above, the CAE’s architecture consists of convolutional, deconvolutional and dense layers and is typically
used for dimensionality reduction and reconstruction purposes. In practice, the CAE’s encoder uses a number of
convolutional layers to compress the input and once the desirable level of reduction has been achieved, the encoded
matrix is flattened into a vector. Then, a dense layer is employed to map this vector to its latent representation. In the
reverse direction, the decoder starts by taking the latent representation and transforming it into a vector through a
denser layer. Subsequently, the input reconstruction is achieved by the deconvolutional layers. Thus, the loss for CAEs
becomes:

𝐿 =
1

𝑁
∑‖𝑴𝒊 − 𝑴�̃� ‖

𝑁

𝑖=1

where 𝑴𝑖 denotes the input arrays used for training and 𝑴�̃� = 𝐷𝑒𝑐𝑜𝑛𝑣𝑁𝑁(𝐶𝑜𝑛𝑣𝑁𝑁(𝑴)) the corresponding CAE’s
output. A schematic representation of a deep CAE is presented in figure 5.

DCoMEX D2.2
 Plan

FIG.5: Schematic representation of a deep convolutional autoencoder

Lastly, aside of convolutional, deconvolutional and dense layers, two other important layer types often employed in
CAEs are those of pooling and unpooling. Pooling layers are quite similar to convolutional layers in the sense that they
downsample the input in order to decrease its size, however, they do not involve any trainable parameters. Their
goal is to reduce the computational load, the memory usage, and the number of parameters. Common types of
pooling layers include the max pooling layer and the average pooling layer. The first outputs the maximum value
from the portion of the input covered by the filter and all other inputs are neglected. Accordingly, average pooling
layers return the average from the portion of the input. On the other hand, unpooling layers perform the reverse
operation of pooling and their aim is to reconstruct the original size of each rectangular patch. These operations are
schematically depicted in figure 6.

FIG. 6: Examples of pooling and unpooling

DCoMEX D2.2
 Plan

3.2 Algorithmic implementation in the MSolve software

The code regarding the Convolutional Autoencoders is located in
https://github.com/mgroupntua/MSolve.MachineLearning. Specifically, the C# class ConvolutionalAutoencoder in the
folder NeuralNetworks of the project MGroup.MachineLearning.Tensorflow can be readily used to implement a CAE.

 ConvolutionalAutoencoder Constructor

ConvolutionalAutoencoder Methods

ConvolutionalAutoencoder(normalization, optimizer, lossFunc, encoderLayers, decoderLayers, epochs, batchSize, seed,

classification)

normalization: normalization option for the preprocessing stage of the CAE (e.g. MinMaxNormalization, ZScoreNormalization)

optimizer: optimization algorithm used for the CAE training (e.g. Adam, SGD, RMSProp)

lossFunc: loss function which will be minimized in the optimization procedure (e.g. MeanSquaredError, MeanAbsoluteError)

encoderLayers: network architecture regarding the layers of the encoder (e.g Convolutional2DLayer, MaxPooling2DLayer)

decoderLayers: network architecture regarding the layers of the decoder (e.g ConvolutionalTranspose2DLayer,
UpSampling2DLayer)

epochs: total number of optimization iterations in terms of processing the full dataset

batchSize: total number of samples that will be processed in a single backpropagation step (default: 32)

seed: (optional)seed of the random number generator (default: null)

classification: controls the nature of the prediction i.e. for classification or regression (default: false)

Train(trainX, testX)

trainX: train dataset (remark: for an AE the input and output are identical)

testX: (optional)test dataset (default: null)

method objective: to train a CAE with the provided train dataset

ValidateNetwork(testX)

testX: test dataset

method objective: to validate a trained CAE with the provided test dataset

https://github.com/mgroupntua/MSolve.MachineLearning

DCoMEX D2.2
 Plan

MapFullToReduced(initialStimuli)

initialStimuli: collection of samples in the initial/full representation

method objective: to calculate the representation of the provided samples in the reduced space

MapReducedToFull(reducedStimuli)

reducedStimuli: collection of samples in the reduced/latent representation

method objective: to calculate the representation of the provided samples in the initial space

EvaluateResponses(initialStimuli)

reducedStimuli: collection of samples in the initial/full representation

method objective: to calculate the representation of the provided samples in the initial space after performing the full CAE

procedure i.e. encoding and decoding

SaveNetwork(netPath, weightsPath, normalizationPath)

netPath: path of the operating system where the CAE architecture is saved to

weightsPath: path of the operating system where the CAE trained parameters are saved to

normalizationPath: path of the operating system where the normalization information is saved

method objective: to save the necessary information of after the training of a CAE, so it can be used in the future or shared

LoadNetwork(netPath, weightsPath, normalizationPath)

netPath: path of the operating system where the CAE architecture is loaded from

weightsPath: path of the operating system where the CAE trained parameters are loaded from

normalizationPath: path of the operating system where the normalization information is loaded from

method objective: to load the necessary information of an already trained CAE

DCoMEX D2.2
 Plan

ConvolutionalAutoencoder Example

3.3 Surrogate modeling scheme using convolutional autoencoders and neural networks
In a similar fashion to section 2.4, let us consider again the modeling of a parametrized physical system governed by
partial differential equations:

𝜕𝑢(𝒙, 𝑡; 𝜽)

𝜕𝑡
+ ℒ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑓(𝒙, 𝑡; 𝜽), 𝒙 ∈ Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩

ℬ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑏(𝒙, 𝑡; 𝜽), 𝒙 ∈ 𝜕 Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩
ℭ[𝑢(𝒙, 0; 𝜽)] = 𝑐(𝒙; 𝜽), 𝒙 ∈ Ω, 𝜽 ∈ 𝛩

By applying spatial and temporal discretization techniques, the complete time-history response of the system is given

by 𝑼(𝜃) = [𝒖(𝜽, 𝑡1), 𝒖(𝜽, 𝑡2), … , 𝒖(𝜽, 𝑡𝑁𝑡
)] ∈ ℝ𝑑×𝑁𝑡, where 𝑁𝑡 is the number of time increments in the temporal

discretization.

The surrogate modeling approach proposed in this section is based on the powerful dimensionality reduction
capabilities of CAEs. To this purpose, the PDEs are solved with the classic numerical procedure for a small, yet sufficient

number, 𝑁, of parameter values in order to obtain a data set of time history matrices {𝑼𝑖}𝑖=1
𝑁 . The CAE (encoder and

decoder) is trained over this data set minimizing the reconstruction mean square error. The encoded representation of

each time history solution matrix 𝑼𝑖 is a low dimensional vector 𝒛𝑖 ∈ ℝ𝑙 (𝑙 ≪ 𝑑), which allows a FFNN to be trained
accurately and efficiently in order to construct a mapping between the PDEs parametric space and the encoded solution
space. It should be mentioned that the optimal architecture and hyperparameters of the CAE and FFNN are typically
obtained via a trial and error procedure. After the training phase is completed, the proposed surrogate scheme works
as follows. For a new input parameter vector, the encoded vector representation of the time history solution matrix is
calculated by the FFNN and, subsequently, the entire time history matrix is delivered by the CAE’s decoder. This way a
large number of additional simulations can be performed at minimum computational cost.

The steps for the algorithmic implementation of the proposed procedure are outlined below.

1. Generate 𝑁 samples of the vector of random parameters 𝜽 and perform 𝑁 simulations. Collect the solutions in
three-dimensional array 𝑁 × 𝑑 × 𝑁𝑡 , where 𝑑 is the number of degrees of freedom and 𝑁𝑡 the number of time
increments.

2. Train a CAE over the 𝑁 time history solution matrices 𝑼𝒊 ∈ ℝ𝑑×𝑁𝑡, collected at step 1, to obtain the encoded

low dimensional vector representations 𝒛𝑖 ∈ ℝ𝑙 of these matrices along with the reconstruction map.
3. Train a FFNN to establish a mapping from the parameter space to the low dimensional encoded space, that is

𝒛𝒊 = 𝐹𝐹𝑁𝑁(𝜽𝒊).
4. For a new vector of parameter values 𝜽 utilize the trained FFNN to obtain the encoder vector representation

𝒛 ∈ ℝ𝑙 of the solution matrix.
5. The CAE’s decoder is used to produce the solution matrix 𝑼 based the encoded representation 𝒛 of the previous

step.

In the above, steps 1-3 constitute the offline (training) phase of the surrogate, while steps 4-5 are the online phase
and these can be repeated for as many parameter instances as required for the purposes of the analysis. A schematic
representation of the proposed surrogate modeling strategy is given in figures 7 and 8.

class ConvolutionalAutoencoderTest

class objective: to illustrate the training accuracy of a CAE in the case of image classification. Specifically, it verifies the correct
implementation and the accuracy of the CAE that has been trained on a subset of the MNIST dataset. Both the reduced

representation and the reconstruction of the images are monitored.

DCoMEX D2.2
 Plan

FIG.7: Offline phase of the proposed surrogate modeling method

FIG. 8: Online phase of the proposed surrogate modeling method

