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1 Description 

 
Deliverable 2.2 is associated to WP2 “Surrogate modelling” of the DCoMEX project, and it provides a comprehensive 
report on the development of a novel surrogate modeling scheme based on the diffusion maps algorithm (DMAP). In 
the amended version of the proposal, an equivalent methodology has been proposed to build surrogate models of 
complex systems which relies on convolutional autoencoders (CAEs) instead of the DMAP algorithm. Both algorithms 
perform the same operation, each with its own merits and shortcomings, therefore two distinct surrogate modeling 
strategies were developed within DCoMEX and presented herein. The outline of the deliverable is the following: Section 
2 illustrates the theoretical background behind the DMAP algorithm, its algorithmic implementation in the MSolve 
software and a surrogate modeling strategy based on DMAP. In a similar fashion, Section 3 presents the basic idea of 
CAEs, their algorithmic implementation in MSolve and the dedicated surrogate modeling strategy for complex 
engineering problems. 

 
 

2 The diffusion maps algorithm 
 

2.1 Theoretical background 
Let 𝑼 = [𝒖𝟏, ⋯ , 𝒖𝑵] be a data set consisting of vectors 𝒖𝒊 ∈ 𝑅𝑑, which can be seen as 𝑁 distinct realizations of an 𝑅𝑑-
valued random variable and sampled independently with density 𝑞(𝒖). Next, assume a connectivity measure 𝐾 
between data pairs 𝒖𝑖 , 𝒖𝑗 such as the Gaussian kernel 

 

𝐾ϵ(𝒖𝒊, 𝒖𝒋) = 𝑒𝑥𝑝 (
− (‖𝒖𝒊 − 𝒖𝒋‖

2
)

4𝜀
) 

 
Next, a discrete approximation to the Laplacian 𝐿ε  is constructed as follows: 
 

 Estimate the densities 𝑞ε at the sample points 𝒖𝑖 as 
 

𝑞ε(𝒖𝑖) =
1

𝑁
∑ 𝐾ε(𝒖𝑖, 𝒖𝑗)

𝑁

𝑗=1

 

 Normalize the previously defined kernel 𝐾ε as 
 

𝐾ε̂(𝒖𝑖, 𝒖𝑗) =
𝐾ε(𝒖𝑖, 𝒖𝑗)

𝑞ε(𝒖𝑖)
α𝑞ε(𝒖𝑗)

α 

 
Where for α = 1 the discrete Laplacian approximates the Laplace-Beltrami operator, while α = 1/2 
approximates a diffusion operator. 

 

 Estimate the new densities 
 

𝑞ε̂(𝒖𝑖) =
1

𝑁
∑ 𝐾ε̂(𝒖𝑖, 𝒖𝑗)

𝑁

𝑗=1

 

 

 If we define the matrix 𝑲 = [𝐾𝑖𝑗] = 𝐾ε̂(𝒖𝑖, 𝒖𝑗) and the diagonal matrix 𝑫 = [𝐷𝑖𝑖] = 𝑞ε(𝒖𝑖), then the discrete 

approximation of the weighted Laplacian is given by the expression: 
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𝑳ε =
𝑫−1𝑲 − 𝑰𝑵

ε
 

 

 The solution to the eigenvalue problem 𝑳ε𝛙 = λ𝛙 will produce the sequence of eigenvalues 0 = λ0 ≥ λ1 ≥ λ2 ≥
 ⋯ and right eigenvectors 𝛙𝑗 for the operator. In practice, only the first 𝑛 non-trivial eigenvectors are kept with 𝑛 

obtained from the expression 
 

𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛,𝑛≥2 (
λ1

λ𝑛
< 𝑡𝑜𝑙) 

 
 

Then, the diffusion map operator Ψε: 𝑢 → 𝑅𝑛can be defined as 
 

Ψε(𝒖) = [𝑒λ1εψ1(𝒖), 𝑒λ2εψ2(𝒖), … , 𝑒λ𝑛εψ𝑛(𝒖)] 

 

2.2 Diffusion maps with variable-bandwidth kernels 

 
In several data-driven applications, the samples follow some distribution which is unknown a priori. It is expected that 
the samples belonging to the tails of the distribution will be fewer and, thus, there will be regions on the manifold that 
will be more sparsely delineated. To address this issue in classical kernel methods the idea of the variable-bandwidth 
(or self-tuning) kernels has been proposed and illustrated herein. The main differentiation with respect to the classical 
DMAP algorithm lies in the form of the kernel used, which in this setting becomes: 
 

𝐾ε
𝑉𝐵(𝒖𝒊, 𝒖𝒋) = 𝑒𝑥𝑝 (

− (‖𝒖𝒊 − 𝒖𝒋‖
𝟐

)

𝟒ερ(𝒖𝒊)ρ(𝒖𝒋)
) 

 
Following the construction for the graph Laplacian of the previous sections, in this case the sample densities are 
 

𝑞ε
𝑉𝐵(𝒖𝑖) = ∑

𝐾ε(𝒖𝑖, 𝒖𝑗)

ρ(𝒖𝑖)
𝑚

𝑁

𝑗=1

 

which are used to construct the kernel  

𝐾ε,α
𝑉𝐵(𝒖𝑖, 𝒖𝒋) =

𝐾ε
𝑉𝐵(𝒖𝑖, 𝒖𝑗)

𝑞ε
𝑉𝐵(𝒖𝑖)

α𝑞ε
𝑉𝐵(𝒖𝑗)

α 

Setting 𝑞ε,α
𝑉𝐵(𝒖𝑖) = ∑ 𝐾ε,α

𝑉𝐵(𝒖𝑖, 𝒖𝑗)𝑁
𝑗=1 , we can obtain the normalized kernel 

𝐾ε,α
𝑉�̂�(𝒖𝑖, 𝒖𝑗) =

𝐾ε,α
𝑉�̂�(𝒖𝑖, 𝒖𝑗)

𝑞ε,α
𝑉𝐵(𝑢𝑖)

 

and the weighted Laplacian for this formulation becomes 

𝐿ε,α
𝑉𝐵 (𝒖𝑖, 𝒖𝑗) =

𝐾ε,α
𝑉�̂�(𝒖𝑖, 𝒖𝑗) − δ𝑖𝑗

ερ(𝒖𝑖)
2  
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2.3 Algorithmic implementation in the MSolve software 

 
The code for implementing the variable-bandwidth diffusion maps algorithm can be found in 
https://github.com/mgroupntua/MSolve.MachineLearning 1. In particular, the C# class DiffusionMapsAlgorithm.cs in 
the MGroup.MachineLearning folder implements the aforementioned procedure for an input data set. An example 
illustrating the use of this class is provided in the MGroup.MachineLearning.Tests folder, called DMAPexample.cs. 
 
In this particular example, an initial data set is considered which consists of 2000 points in 𝑅2, generated from a 2-
dimensional Gaussian distribution centered at zero with covariance 𝐶 = 0.04𝐼𝟚. Using the syntax outlined below, a 
new object called DMAP from the DiffusionMapsAlgorithm class is generated, taking as input from the user a specified 
set of variables. Then the method ProcessData() applies the DMAP algorithm and computes the member variables 
DMAP.DMAPeigenvalues[⋅] and DMAP.DMAPeigenvalues[⋅]. 
 

 dataSet : the initial data set 

 numberOfKNN: number of k-nearest neighbors used in the evaluation of the kernel 𝐾ε,α
𝑉𝐵(𝒖𝑖, 𝒖𝒋) 

 numberOfKDE: number of k-nearest neighbors required to estimate the kernel parameter ε 

 differentialOperator:  1 – Laplace Beltrami operator, 2- generator of grad systems 

 numberOfEigenvectors: The number of eigenvectors requested by the user 
 
 
 
 
 
 
 
 
 
 
The data used in this particular example are shown in figure 1, while figure 2 depicts the first 10 non-trivial DMAP 
eigenvalues. 
 
 

 

Figure 1: initial data samples 

 

                                                         
1 The code has originally been submitted in the repo https://github.com/YiannisKalogeris/MSolve.MachineLearning 

 

DiffusionMapsAlgorithm DMAP = new DiffusionMapsAlgorithm(dataSet, 

numberOfKNN, NNofKDE, differentialOperator, numberOfEigenvectors); 

 

DMAP.ProcessData(); 

 

 

https://github.com/mgroupntua/MSolve.MachineLearning
https://github.com/YiannisKalogeris/MSolve.MachineLearning
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Figure 2: The first 10 diffusion map eigenvalues 

 

2.4 Surrogate modeling scheme using diffusion maps and neural networks 
Consider the modeling of a parametrized physical system governed by partial differential equations: 
 

𝜕𝑢(𝒙, 𝑡; 𝜽)

𝜕𝑡
+  ℒ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑓(𝒙, 𝑡; 𝜽), 𝒙 ∈ Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩  

ℬ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑏(𝒙, 𝑡; 𝜽), 𝒙 ∈ 𝜕 Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩  
ℭ[𝑢(𝒙, 0; 𝜽)] = 𝑐(𝒙; 𝜽), 𝒙 ∈ Ω, 𝜽 ∈ 𝛩 

 
where 𝑢(𝒙, 𝑡; 𝜽) is the (scalar) field of interest, ℒ is a general differential operator that involves spatial derivatives and 
𝑓(𝒙, 𝑡; 𝜽) is a source field. Also, ℬ is the operator for the boundary conditions defined on 𝜕Ω, ℭ is the operator for the 
initial conditions of the problem at 𝑡 = 0 and 𝜽 ∈ Θ is the vector of the problem’s parameters.  
 
The discrete solution to the above set of equations for a given parameter instance 𝜽 is obtained using numerical 
discretization techniques, such as the finite element method. In the context of parametric simulations, a set of 

parameter samples {𝜽𝒋}
𝑗

𝑁
 is initially generated and the discretized solution vectors 𝒖𝒋(𝑡𝑘) ∈ ℝ𝑑 corresponding to 

each parameter instance 𝜽𝒋 and time instance 𝑡𝑘  are obtained through the numerical solution of the partial 

differential equation. 
 
Based on the above, the numerical solution of the PDE can be regarded as a nonlinear mapping from the parametric 

space of ℝ𝑑. However, for a large-scale (𝑑 ≫ 1) nonlinear dynamic problem, solving the corresponding numerical model 
can take significant computational resources and memory requirements. An intuitive approach to reduce this cost would 
be to exchange this mapping with another one that will be adequately accurate and much faster to compute. For this 
task, an feed-forward neural network, or FFNN for short trained over a reduced set of system solution would seem an 
appealing choice. Nevertheless, a FFNN with such high-dimensional output translates to a massive number of network 
parameters to be calibrated and the associated computational cost and memory demands would render this process 
unprofitable.  
 
Our approach to overcome this issue is by employing the DMAP algorithm in order to reduce the dimensionality of the 
model’s output, which will allow us to efficiently train a FFNN that will map points from the parametric space to their 
reduced representation in the DMAP space. Next, another mapping needs to established from the DMAP space to the 
high-dimensional solution space that will reconstruct the system’s solutions from their reduced representations. For 
this purpose, in our investigation we chose the Laplacian Pyramids interpolation algorithm. The steps for the algorithmic 
implementation of the proposed procedure are outlined below.  
 

1. Generate 𝑁 samples of the vector of random parameters 𝜽 and perform 𝑁 simulations. Collect the solutions at 
𝑁𝑡  time increments to obtain the 𝑑 × 𝑁𝑡𝑟 matrix of solutions (snapshots) 𝑼 = [𝒖𝟏, 𝒖2, … , 𝒖𝑁𝑡𝑟

], where 𝑁𝑡𝑟 =

𝑁 × 𝑁𝑡 , 𝑁𝑡  being the total number of time steps in the problem. 
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2. Given the matrix 𝑼 of the 𝑁𝑡𝑟  distinct solutions, utilize the machinery provided by the diffusion maps algorithm 

to a identify a low dimensional representation 𝒖 ∈ ℝ𝑑 → 𝒛 ∈ ℝ𝑛, with 𝑛 ≪ 𝑑. 

3. Train a FFNN using {𝒆𝑖}𝑖=1
𝑁𝑡𝑟 = {(𝜽𝑗, 𝑡𝑘)}

1≤𝑗≤𝑁,1≤𝑘≤𝑁𝑡
 as input and the DMAP coordinates {𝑧𝑖}𝑖=1

𝑁𝑡𝑟  as output. 

4. For a new vector of parameter values 𝒆 = (𝜽, 𝑡) utilize the previously trained FFNN nonlinear mapping to obtain 
its image in the DMAP space as 𝐹𝐹𝑁𝑁(𝒆) = 𝒛 ∈ ℝ𝑛. 

5. Solve the pre-image problem with the Laplacian pyramid interpolation scheme to obtain the solution 𝒖 =

𝐿𝑃(𝒛) ∈ ℝ𝑑 
 

In the above, steps 1-3 constitute the offline (training) phase of the surrogate, while steps 4-5 are the online phase 
and these can be repeated for as many parameter instances as required for the purposes of the analysis. A schematic 
representation of the proposed surrogate modeling strategy is given in figure 3. 
 

 
Fig 3. Concept of the proposed surrogate modeling strategy 
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3 Convolutional autoencoders 
3.1 Theoretical background 
 
The Autoencoder (AE) concept is regarded as a neural network that learns from an unlabeled data set in an 
unsupervised manner. The aim of an AE is to learn a reduced representation for a set of data, known as encoding, and 
then learn how to reconstruct the original input from the encoded input with the minimum possible error. The latter 
part of the AE is called the decoder. 
  
In particular, let 𝑿 be a subset of ℝd with 𝒙 ∈ 𝑿 denoting an element of the set. Then, the AE’s encoder and decoder 
are defined as transition maps 𝜑, 𝜓 such that: 

𝜑: 𝑿 ⊆ ℝd → 𝑯 ⊆ ℝl 

𝜓: 𝜢 ⊆ ℝ𝑙 → 𝑿 ⊆ ℝd 
𝜑, 𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜑,𝜓‖𝑿 − (𝜓𝜊𝜑)𝑿‖ 

with the dimension 𝑙 typically being much smaller than 𝑑. 
 

Now, let us consider the simplest case, where the encoder has only one hidden layer. It takes an input 𝒙 ∈ ℝd and 

sends it to 𝒉 = 𝜑(𝒙) ∈ ℝl with 𝒉 = 𝝈(𝑾𝒙 + 𝒃), 𝜎 being an activation function (e.g. tanh or ReLU), 𝑾 a weight matrix 
and 𝒃 a bias vector. The image 𝒉 of 𝒙 is the latent or encoded representation of 𝒙 and 𝑯 is the latent or feature space. 
 
The decoder’s task is to establish the reverse mapping 𝜓 that will reconstruct the input 𝒙, given its latent 

representation 𝒉. Again, considering a one-hidden layer, the reconstructed point 𝒙 = 𝜓(𝒉) is given by: 𝒙 = �̃�(�̃�𝒉 +

�̃� ), with �̃�, �̃�, �̃�  being different than those of the encoder. Also, the network’s architecture selected for the encoder 
can be different than that of the decoder and the number of hidden layers can be greater than one, leading to the so-
called deep AEs. 
 
AEs are trained by a back propagation algorithm, which is the most commonly used algorithm for the training of NNs. 
The training loss function becomes the reconstruction error between the input points 𝒙𝑖 and their respective output 
𝒙�̃�, that is: 

𝐿 =
1

𝑁
∑‖𝑥𝑖 − 𝑥�̃� ‖

𝑁

𝑖=1

 

Despite their powerful dimensionality reduction properties, AEs face significant challenges when dealing with very 
high-dimensional inputs, due to the fact that the number of trainable parameters increases drastically with an 
increase in the input’s dimensionality. In addition, AEs are not capable of capturing the spatial features of the input 
(e.g. when dealing with images) nor the sequential information in the input (e.g. when dealing with sequence data). 
To remedy these issues, a new type of AEs has emerged, that of convolutional autoencoders (CAEs). Similarly to AEs, 
CAEs also consist of an encoder and a decoder that are trained to minimize the loss function, but they are built from 
different layer types. Specifically, in CAEs the encoder part is built using a combination of convolutional layers, fully 
connected layers, pooling layers and normalization layers, while the decoder is built from deconvolutional layers and 
unpooling layers along with fully connected and normalization layers. Intuitively, CAEs can be viewed as extensions of 
ordinary AEs in the same way that CNNs are extensions of FFNNs. 
 
Convolutional layers take as input a 𝑛 − 𝐷 array 𝑴 and apply a filter (a.k.a kernel) 𝐹 of specified size to the elements 
of 𝑴 in a moving window fashion. This process is schematically depicted in following figure.  
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FIG. 4: Schematic representation of a 2 − 𝐷 convolutional filter with strides 𝑠ℎ = 2 and 𝑠𝑣 = 2  

 

To better clarify this process, let us consider a 2 − 𝐷 array 𝑴 = [𝑚𝑖𝑗]  and its encoded version 𝑴𝑒𝑛𝑐 = [𝜇𝑖𝑗], called 

feature map, which is obtained after applying a filter 𝑾 = [𝑤𝑖𝑗] of size 𝑓ℎ × 𝑓𝑤, moving with vertical stride 𝑠𝑣 and 

horizontal stride 𝑠ℎ. The element 𝜇𝑖𝑗  of 𝑴𝑒𝑛𝑐  is given by the equation:  

𝜇𝑖𝑗 = ∑ ∑ 𝑚𝑖′𝑗′ ⋅ 𝑤𝑢𝑣 + 𝑏

𝑓𝑤

𝑣=1

𝑓ℎ

𝑢=1

 𝑤𝑖𝑡ℎ 𝑖′ = 𝑖 × 𝑠𝑣 + 𝑢,  𝑗′ = 𝑗 × 𝑠ℎ + 𝑣 

where 𝑏 is the bias term and 𝑤𝑢𝑣 is the element of the filter 𝑾 that gives the connection weight between elements of 
𝑴𝑒𝑛𝑐  and the element of 𝑴 within the respective window. This layer architecture is significantly more economical 
than that of a fully connected layer since the parameters involved are only the 𝑓ℎ × 𝑓𝑤 elements of the filter 𝑾 and 
the bias term 𝑏. The filter parameters do not require to be manually defined, instead the convolutional layer will learn 
the most appropriate filter for the task. Also, a convolutional layer can have multiple filters, in which case it outputs 
one feature map 𝑴𝑘

𝑒𝑛𝑐  per each filter 𝑘. We shall write 𝑴𝑒𝑛𝑐 = 𝐶𝑜𝑛𝑣𝑁𝑁(𝑴) to denote the application of several 
convolutional layers, with multiple filters each, to an array 𝑴. 
 
On the other hand, a deconvolutional layer performs the reverse operation of convolution, called deconvolution, and 
it is used to construct decoding layers. Their function is to multiply each input value by a filter elementwise. For 
instance a 2D 𝑓ℎ × 𝑓𝑤  deconvolution filter maps a 1 × 1 spatial region of the input to an 𝑓ℎ × 𝑓𝑤 region of the output. 
Thus, the filters learned in the deconvolutional layers create a basis used for the reconstruction of the inputs’ shape, 
taking into consideration the required shape of the output. As before, a deconvolutional layer can have multiple 
filters, while several deconvolutional layers can be stacked for building deep architectures. The decoding procedure 
can be represented as: 𝑴 = 𝐷𝑒𝑐𝑜𝑛𝑣𝑁𝑁(𝑴𝑒𝑛𝑐). 
 
Based on the above, the CAE’s architecture consists of convolutional, deconvolutional and dense layers and is typically 
used for dimensionality reduction and reconstruction purposes. In practice, the CAE’s encoder uses a number of 
convolutional layers to compress the input and once the desirable level of reduction has been achieved, the encoded 
matrix is flattened into a vector. Then, a dense layer is employed to map this vector to its latent representation. In the 
reverse direction, the decoder starts by taking the latent representation and transforming it into a vector through a 
denser layer. Subsequently, the input reconstruction is achieved by the deconvolutional layers. Thus, the loss for CAEs 
becomes: 

𝐿 =
1

𝑁
∑‖𝑴𝒊 − 𝑴�̃� ‖

𝑁

𝑖=1

 

where 𝑴𝑖  denotes the input arrays used for training and  𝑴�̃� = 𝐷𝑒𝑐𝑜𝑛𝑣𝑁𝑁(𝐶𝑜𝑛𝑣𝑁𝑁(𝑴)) the corresponding CAE’s 
output. A schematic representation of a deep CAE is presented in figure 5. 
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FIG.5: Schematic representation of a deep convolutional autoencoder 

 

Lastly, aside of convolutional, deconvolutional and dense layers, two other important layer types often employed in 
CAEs are those of pooling and unpooling. Pooling layers are quite similar to convolutional layers in the sense that they 
downsample the input in order to decrease its size, however, they do not involve any trainable parameters. Their 
goal is to reduce the computational load, the memory usage, and the number of parameters. Common types of 
pooling layers include the max pooling layer and the average pooling layer. The first outputs the maximum value 
from the portion of the input covered by the filter and all other inputs are neglected. Accordingly, average pooling 
layers return the average from the portion of the input. On the other hand, unpooling layers perform the reverse 
operation of pooling and their aim is to reconstruct the original size of each rectangular patch. These operations are 
schematically depicted in figure 6. 
 

 
FIG. 6: Examples of pooling and unpooling 
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3.2 Algorithmic implementation in the MSolve software 
 
The code regarding the Convolutional Autoencoders is located in 
https://github.com/mgroupntua/MSolve.MachineLearning. Specifically, the C# class ConvolutionalAutoencoder in the 
folder NeuralNetworks of the project MGroup.MachineLearning.Tensorflow can be readily used to implement a CAE. 
 
 ConvolutionalAutoencoder Constructor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ConvolutionalAutoencoder Methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ConvolutionalAutoencoder(normalization, optimizer, lossFunc, encoderLayers, decoderLayers, epochs, batchSize, seed, 

classification) 
 
normalization: normalization option for the preprocessing stage of the CAE (e.g. MinMaxNormalization, ZScoreNormalization)  
 

optimizer: optimization algorithm used for the CAE training (e.g. Adam, SGD, RMSProp) 

 
lossFunc: loss function which will be minimized in the optimization procedure (e.g. MeanSquaredError, MeanAbsoluteError) 

 

encoderLayers: network architecture regarding the layers of the encoder (e.g Convolutional2DLayer, MaxPooling2DLayer) 
 

decoderLayers: network architecture regarding the layers of the decoder (e.g ConvolutionalTranspose2DLayer, 
UpSampling2DLayer) 

 

epochs: total number of optimization iterations in terms of processing the full dataset 
 

batchSize: total number of samples that will be processed in a single backpropagation step (default: 32) 

 
seed: (optional)seed of the random number generator (default: null) 

 
classification: controls the nature of the prediction i.e. for classification or regression (default: false) 
 

 

 
Train(trainX, testX) 
 
trainX: train dataset (remark: for an AE the input and output are identical) 
 
testX: (optional)test dataset (default: null) 
 

 

method objective: to train a CAE with the provided train dataset 

 
ValidateNetwork(testX) 
 
testX: test dataset 
 

method objective: to validate a trained CAE with the provided test dataset 

 

https://github.com/mgroupntua/MSolve.MachineLearning
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MapFullToReduced(initialStimuli) 
 
initialStimuli: collection of samples in the initial/full representation 
 

method objective: to calculate the representation of the provided samples in the reduced space 

 

 
MapReducedToFull(reducedStimuli) 
 
reducedStimuli: collection of samples in the reduced/latent representation 

 

method objective: to calculate the representation of the provided samples in the initial space 

 

 
EvaluateResponses(initialStimuli) 
 
reducedStimuli: collection of samples in the initial/full representation 

 
method objective: to calculate the representation of the provided samples in the initial space after performing the full CAE 

procedure i.e. encoding and decoding  

 

 
SaveNetwork(netPath, weightsPath, normalizationPath) 
 
netPath: path of the operating system where the CAE architecture is saved to 

 

weightsPath: path of the operating system where the CAE trained parameters are saved to 
 

normalizationPath: path of the operating system where the normalization information is saved 
 

 

method objective: to save the necessary information of after the training of a CAE, so it can be used in the future or shared 

 

 
LoadNetwork(netPath, weightsPath, normalizationPath) 
 
netPath: path of the operating system where the CAE architecture is loaded from 

 

weightsPath: path of the operating system where the CAE trained parameters are loaded from 
 

normalizationPath: path of the operating system where the normalization information is loaded from 
 

 

method objective: to load the necessary information of an already trained CAE 
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ConvolutionalAutoencoder Example 
 
 
 
 
 
 
 
 
 
 

 

3.3 Surrogate modeling scheme using convolutional autoencoders and neural networks 
In a similar fashion to section 2.4, let us consider again the modeling of a parametrized physical system governed by 
partial differential equations: 
 

𝜕𝑢(𝒙, 𝑡; 𝜽)

𝜕𝑡
+  ℒ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑓(𝒙, 𝑡; 𝜽), 𝒙 ∈ Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩  

ℬ[𝑢(𝒙, 𝑡; 𝜽)] = 𝑏(𝒙, 𝑡; 𝜽), 𝒙 ∈ 𝜕 Ω, 𝑡 ∈ [0, 𝑇], 𝜽 ∈ 𝛩  
ℭ[𝑢(𝒙, 0; 𝜽)] = 𝑐(𝒙; 𝜽), 𝒙 ∈ Ω, 𝜽 ∈ 𝛩 

 
By applying spatial and temporal discretization techniques, the complete time-history response of the system is given 

by 𝑼(𝜃) = [𝒖(𝜽, 𝑡1), 𝒖(𝜽, 𝑡2), … , 𝒖(𝜽, 𝑡𝑁𝑡
)] ∈ ℝ𝑑×𝑁𝑡, where 𝑁𝑡  is the number of time increments in the temporal 

discretization. 
 
The surrogate modeling approach proposed in this section is based on the powerful dimensionality reduction 
capabilities of CAEs. To this purpose, the PDEs are solved with the classic numerical procedure for a small, yet sufficient 

number, 𝑁, of parameter values in order to obtain a data set of time history matrices {𝑼𝑖}𝑖=1 
𝑁 . The CAE (encoder and 

decoder) is trained over this data set minimizing the reconstruction mean square error. The encoded representation of 

each time history solution matrix 𝑼𝑖  is a low dimensional vector 𝒛𝑖 ∈ ℝ𝑙 (𝑙 ≪ 𝑑), which allows a FFNN to be trained 
accurately and efficiently in order to construct a mapping between the PDEs parametric space and the encoded solution 
space. It should be mentioned that the optimal architecture and hyperparameters of the CAE and FFNN are typically 
obtained via a trial and error procedure. After the training phase is completed, the proposed surrogate scheme works 
as follows. For a new input parameter vector, the encoded vector representation of the time history solution matrix is 
calculated by the FFNN and, subsequently, the entire time history matrix is delivered by the CAE’s decoder. This way a 
large number of additional simulations can be performed at minimum computational cost. 
 
The steps for the algorithmic implementation of the proposed procedure are outlined below.  

1. Generate 𝑁 samples of the vector of random parameters 𝜽 and perform 𝑁 simulations. Collect the solutions in 
three-dimensional array 𝑁 × 𝑑 × 𝑁𝑡 , where 𝑑 is the number of degrees of freedom and 𝑁𝑡  the number of time 
increments. 

2. Train a CAE over the 𝑁 time history solution matrices 𝑼𝒊 ∈ ℝ𝑑×𝑁𝑡, collected at step 1, to obtain the encoded 

low dimensional vector representations 𝒛𝑖 ∈ ℝ𝑙  of these matrices along with the reconstruction map. 
3. Train a FFNN to establish a mapping from the parameter space to the low dimensional encoded space, that is 

𝒛𝒊 = 𝐹𝐹𝑁𝑁(𝜽𝒊). 
4. For a new vector of parameter values 𝜽 utilize the trained FFNN to obtain the encoder vector representation 

𝒛 ∈ ℝ𝑙  of the solution matrix. 
5. The CAE’s decoder is used to produce the solution matrix 𝑼 based the encoded representation 𝒛 of the previous 

step. 
 

In the above, steps 1-3 constitute the offline (training) phase of the surrogate, while steps 4-5 are the online phase 
and these can be repeated for as many parameter instances as required for the purposes of the analysis. A schematic 
representation of the proposed surrogate modeling strategy is given in figures 7 and 8. 

 
class ConvolutionalAutoencoderTest 
 
 

class objective: to illustrate the training accuracy of a CAE in the case of image classification. Specifically, it verifies the correct 
implementation and the accuracy of the CAE that has been trained on a subset of the MNIST dataset. Both the reduced 

representation and the reconstruction of the images are monitored. 
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FIG.7: Offline phase of the proposed surrogate modeling method 

 

 
FIG. 8: Online phase of the proposed surrogate modeling method 

 
 

 
 

 


