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Introduction

• Porous consolidation of clays.  Equillibrium equations of solid 
coupled with equations of fluid flow 

• For lower frequency excitations  u-p formulation which requires 
less computational effort

• The soil behavior is described with the compressibility factor κ, the 
critical state line inclination of the soil c and the permeability k. In 
this context, Modified Cam Clay models are implemented. 



Introduction

• In the stochastic finite element method there are two ways of 
providing the spatial distribution of the input stochastic variables 

1. The nodal points are considered as random variables and 
deterministic shape functions are used for providing the material 
spatial distribution

2. The spectral representation or the Karhunen Loeve sum, can be 
applied for providing a random field of the variable under 
consideration.



Introduction

• In this work the material yield model proposed by Kavvadas and 
Amorosi is adopted  accurate and reliable material model

• Valid quantitative results for predicting the response for porous 
consolidation of clays under uncertainty

• The goal is to quantify the uncertainty of the output displacement in 
relation to the variability of the input, the spatial distribution of the 
material variables and the eccentricity of the footing settlement.



Dynamic soil-pore-fluid interaction-The Biot problem
• Equation of equilibrium for the soil-fluid mixture

𝑺𝑻𝝈 − 𝜌 ሷ𝒖 − 𝜌𝑓 ሶ𝒘 + 𝒘𝛻𝑇𝒘 + 𝜌𝒃 = 𝟎

• Equation of balance of the fluid

−𝛻𝑝 − 𝑹 − 𝜌𝑓 ሷ𝒖 −
𝜌𝑓 ሶ𝒘 + 𝒘𝛻𝑇𝒘

𝑛
+ 𝜌𝑓𝒃 = 𝟎

• Flow conservation equation

𝛻𝑇𝒘+ 1 −
𝐾𝑇
𝐾𝑠

𝑰 ሶ𝜺 + ሶ𝑝(
𝑛

𝐾𝑓
+
1 − 𝑛

𝐾𝑠
) +

𝑛 ሶ𝜌𝑓

𝜌𝑓
+ ሶ𝒔 = 𝟎

• Darcy law  𝒌𝑹 = 𝒘

• Stress-Strain material law and pore pressure stress equation 
𝒅𝝈′ = 𝑫𝒅𝜺𝒆𝒍 , 𝝈

′ = 𝝈 + 𝑝

• Boundary conditions of known pressures, displacements, water velocity and stresses in specific parts of the 
boundary.



Dynamic soil-pore-fluid interaction-The u-p problem
• Equation of equilibrium for the soil-fluid mixture

𝑺𝑻𝝈 − 𝜌 ሷ𝒖 + 𝜌𝒃 = 𝟎

• Flow conservation equation

𝛻𝑇𝒌(−𝛻𝑝 − 𝜌𝑓 ሷ𝒖 + 𝜌𝑓𝒃) + 1 −
𝐾𝑇
𝐾𝑠

𝑰 ሶ𝜺 + ሶ𝑝
𝑛

𝐾𝑓
+
1 − 𝑛

𝐾𝑠
+ ሶ𝒔 = 𝟎

• Stress-Strain material law and pore pressure stress equation 
𝒅𝝈′ = 𝑫𝒅𝜺𝒆𝒍 , 𝝈

′ = 𝝈 + 𝑝

• Boundary conditions of known pressures, displacements, water velocity and stresses in 
specific parts of the boundary.

• This formulation is valid in low frequency excitations in relation with the eigenfrequency of 
the soil and in static problems.



Dynamic soil-pore-fluid interaction-FEM simulation

• Equation of discretized u-p formulation
𝑴 ሷ𝒖 + 𝑪 ሶ𝒖 + 𝑲𝒖 = 𝑭

𝑴 =
𝑴𝟏 𝟎
𝟎 𝟎

, 𝑪 =
𝑪𝟏 𝟎

𝑸𝒄
𝑻 𝑺

, 𝑲 =
𝑲𝟏 −𝑸𝒄

𝟎 𝑯
, 𝑭 =

𝑭𝟏
𝟎

, 𝒖 = [
𝒖
𝒑]

Where 𝑴𝟏, 𝑪𝟏, 𝑲𝟏 are the standard mass, damping and stiffness matrices 
respectively and 𝑸𝒄 , 𝑯, 𝑺 are the coupling, permeability and saturation matrices 
respectively and are expressed as 

𝑸𝒄 = න

𝑉

𝑩𝑻𝑰𝑵𝒑 𝑑𝑉,𝑯 = න

𝑉

𝛁𝑵𝒑
𝑻
𝒌 𝛁𝑵𝒑 𝑑𝑉, 𝑺 = න

𝑉

𝑵𝒑
𝑻𝑵𝑷

𝑛

𝐾𝑓
+
1 − 𝑛

𝐾𝑠
𝑑𝑉



The material yield stress model

• Bond Strength Envelope (BSE) 
1

𝑐2
𝒔: 𝒔 + 𝑝ℎ − 𝑎 2 − 𝑎2 = 0

• Plastic Yield Envelope (PYE) 
1

𝑐2
(𝒔 − 𝒔𝑳): 𝒔 − 𝒔𝑳 + 𝑝ℎ − 𝑝𝐿

2 − (𝜉𝑎)2= 0

• Intrinsic Strength Envelope (ISE)
1

𝑐2
𝒔: 𝒔 + 𝑝ℎ − 𝑎 2 − 𝑎2 = 0

• The PYE is always inside BSE and ISE is the smallest possible BSE



The material yield stress model

Graphical representation of the constitutive model



The Karhunen Loeve Series

• For a random field with zero mean and an autocovariance function

𝐶ℎ = 𝜎𝑑
2𝑒

ΔΧ

𝑏

The solution of the integrodifferential Fredholm problem provide analytical 
expressions for the eigenvalues λ and sinusoidal expressions for eigenfunctions Φ. 
Therefore a robust equation of the random field and is expressed as follows

𝐻 𝒙,𝜔 = 𝜇 𝒙 +

1

𝑀

𝜆𝑖Φi 𝐱 ξi(ω)

For M number of eigenfunctions chosen to achieve minimum error and ξi(ω) a 
set of standard normal random variables.



The truncated normal distribution

• If the domain of definition of the probability is the [a, b] and we know the 
normal distribution moments of the PDF in [−∞,∞] (μ, 𝜎𝑑) then the PDF in [a, 
b] is expressed as

𝑔1 𝑥 =
φ Χ0

𝜎𝑑 Φ Β −Φ Α

Where φ and Φ represent the standard normal probability and cumulative 
distribution function respectively. The Χ0 , Β, 𝐴 are the normalized coordinates 
for x, a, b respectively. The mean value and standard deviation of 𝑔1 𝑥 are 
functions of the values (μ, 𝜎𝑑) and the values of φ and Φ in A and B



Algorithm for the determination of the failure load in the case of a ramp loading 
time function 

• Let the ramp load function be 
defined. For determining the factor 
λ* at the time T a recursive relation 
is proposed:

• 𝜆𝑛+1 = 𝒂
𝜆𝑛𝑡𝑛

𝑇
+ 𝐛 𝜆𝑛

• The difference between two 
adjacent iterations at the infinite 
tends to 0 consequently 
convergence is achieved if and only 
if. 𝟎 = 𝒂 + 𝐛 − 𝟏



Algorithm for the determination of the failure load in the case of a ramp loading 
time function 

• Only one initial trial guess
• Smaller number of 

iterations for convergence
• Computational time 

reduction in comparison 
with the bisection method 
in the vicinity of 35%

• Relative error less than 1%

Bisection                                          
Algorithm

Bisection                                          
Algorithm

Bisection                                          
Algorithm

Proposed                                         
Algorithm         

a=1/3 b=2/3

Proposed                                         
Algorithm         

a=1/2 b=1/2

Proposed                                         
Algorithm         

a=2/3 
b=1/3

Proposed                                         
Algorithm         
a=1 b=0

Absolute                             
percentag

e                                       
difference     

a=1/3 
b=2/3

Absolute                             
percenta

ge                                       
differenc

e     
a=1/2 
b=1/2

Absolute                             
percenta

ge                                       
differenc
e     a=2/3 

b=1/3

Absolute                             
percenta

ge                                       
differenc
e     a=1 

b=0

Initial value
of failure stress 
(KPa) 5000 5000 5000 5000 5000 5000 5000

Initial value
of safety stress 
(KPa) 1000 2000 3000 - - - -

Convergence 
Tolerance 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Number of trials 
for 
convergence 6 5 5 6 5 4 3

Displacement
of failure at 
convergence (m) 0.03054 0.03072 0.03054 0.03078 0.03079 0.03071 0.03072 0.78 0.80 0.54 0.58

Load
of failure at 
convergence 
(KPa) 4484.38 4478.52 4484.38 4555.60 4518.22 4505.94 4477.50 1.59 0.75 0.48 0.15

Computational 
time (mins) 750 833 663 631 584 475 302 4.83 11.92 28.36 54.45



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description
• Porous problems and solid problems

• Shallow foundation with linear distributed equivalent 

Forces for a combination of N,M and 4 eccentricities 

e=0, h/12, h/6, h/3

• 8 node Hexa with linear shape functions for u and p

• Initial stresses  Geostatic vertical stresses and 

horizontal stresses=100 KPa

• Boundary conditions  u(z=h)=0 

• Deterministic calibration parameters, Poisson ratio, plasticity hardening 
parameters 

• 100 samples of Monte Carlo simulations considering the Latin Hypercube 
Sampling



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description

Solid analyses performed. 

κ c Abbreviation

Constant Constant S-κC-cC

Linear Constant S-κL-cC

Constant Random S-κC-cR

Linear Random S-κL-cR



Porous analyses performed.

κ c k Abbreviation

Constant Deterministic Deterministic P-κC-cD-kD

Linear Deterministic Deterministic P-κL-cD-kD

Constant Deterministic Random P-κC-cD-kR

Linear Deterministic Random P-κL-cD-kR

Constant Random Deterministic P-κC-cR-kD

Linear Random Deterministic P-κL-cR-kD

Constant Random Random P-κC-cR-kR

Linear Random Random P-κL-cR-kR

Random Field,b=2 Random Field,b=2 Random Field,b=2 P-κRF-cRF-kRF2

Random Field,b=4 Random Field,b=4 Random Field,b=4 P-κRF-cRF-kRF4

Random Field,b=8 Random Field,b=8 Random Field,b=8 P-κRF-cRF-kRF8

Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description
• κLκ(z=0)=0,008686 and 𝑅 = κ(z=h)/κ(z=0) is random with 𝑅mean = 0,469 and 𝐶𝑉𝑅 = 0,25

• κC κμ =0,004074 and 𝐶𝑉 = 0,25

• cRMean value of friction angle 23° and standard deviation of 2° and 𝑐 =

2

3
6 sin 𝜑

3−𝑠𝑖𝑛(𝜑)

• cC c=0,7336 for friction angle of 23°

• κRF Mean value=0,008686, exponential autocorrelation function 𝐶𝑉 = 0,25, b=75 and 100

•

• cRFMean value= 0,7336, exponential autocorrelation function 𝐶𝑉 = 0,25, b=75 and 100

•

• kRFMean value=10−8
𝑚3𝑠

𝑀𝑔𝑟
, exponential autocorrelation function 𝐶𝑉 = 0,25, b=75 and 

100 



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Failure load (Kpa)
Solid analyses

Failure displacements (m)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

• When κL distribution is assumed, larger mean failure displacement, larger 
mean failure loads, smaller failure displacement and larger failure loads CV is 
obtained in relation with κc . The largest uncertainty for failure load is about 
40% the uncertainty of the input while for the failure displacements is about 
the same of the input variability

• Critical spatial distribution for mean value and CV for both output variables 
is κC 

• As the eccentricity increases  the mean failure load increases and the mean 
settlement rotation decreases

• Justification In κL the upper layers of the soil are more compressible 
though with less variability so the strains are expected with less variability 
and so it is expected the output displacement. When the constant 
distribution for the compressibility is assumed more integration points have 
the same or similar stiffness thus leading to larger failure loads. 



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Porous analyses with deterministic shape functions for κ, c, k

Failure displacements (m) Failure load (Kpa)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements
• The CV of failure loads is less dependent by the eccentricity, unlike the 

displacements and rotations.
• Maximum CV of failure load in porous analyses (κc case) is 44 % smaller than 

the input CV and for failure displacements 2,6 times greater than the input
CV

• Porous analyses Important variability reduction for failure maximum stress
whilst for failure displacements in the case of the constant distribution for 
the compressibility factor significant variability increase occurs and the 
rotation of the footing has output uncertainty in the vicinity of the input 
variability 

• Justification  Bulk modulus 𝐾𝑏 is a function of mean stress (Poroelasticity).
So 𝐾𝑏 , in porous analyses is expected with smaller values and smaller 
uncertainrty. Similar conclusions can be made for the failure displacements 
since there is no tensile strength of the soil point and consequently there is 
smaller surface of the BSE leading to the aforementioned results



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Porous analyses with random field representation for all stochastic material variables

Failure displacements (m) Failure load (Kpa)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements
• Maximum CV of the output for failure load and displacements is about 36% lower

than the uncertainty of the input while for rotation of the footing is equal to the 
variability of the input.

• Mean values of failure load and failure displacements slightly deviate from the 
corresponding mean values in the analyses with deterministic values for the material 
variables. This deviation is up to 17% for the forces and in the vicinity of 20% for the 
displacements.

• In the case of porous random field analyses the increase of the correlation length for
reduces the CV of the output for stresses and displacements whilst for the rotation of 
the settlement at failure the critical correlation length is 4 m.

• Justification  The integration point failure may be «from the wet side» (from the 
left side of the vertical halfaxis of the ellipse) or «from the dry side» (from the right 
side of the vertical halfaxis of the ellipse) consequently a large change of the value of 
c may incorporate very large deviation of the stress point of failure leading to the 
aforementioned results.



Numerical tests on stochastic consolidation with random linear and non 
linear material-Analysis of the results (Kolmogorov Smirnov Test)

• Assumption  The output displacement follows the truncated normal distribution.

• Justification from Histograms  Graphically this holds

• Justification from numerical test  Kolmogorov Smirnov test for a sample following a 
distribution. 

• The largest absolute difference of the theoretical and the numerical CDF is compared to the 
critical value. Since it is less than the critical value the null hypothesis holds and the sample 
follows the truncated normal distribution. Therefore the null hypothesis at the 5% significance 
level is satisfied to the randomly selected analyses presented to the histograms

• Despite the material non linearity the output displacement still has the Gaussian nature of the 
randomness



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Largest 
Absolute 
Difference

Figure 
(a)

Figure (b) Figure (c) Critical

Significance 
level 5%

0,0821 0,0972 0,1121 0,13851

Kolmogorov-Smirnov Test



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure mechanism Solid Analyses
• The distribution for the critical state line inclination cR provides the larger uncertainty and 

the smallest minimum values of failure in both hydrostatic and deviatoric components.

• The same distribution maximizes the uncertainty of the strains which are in the order of 
magnitude of 12 ‰ for the linear distribution for κ and 5 ‰ for the constant distribution for 
κ 

• In most cases the deviatoric failure occurs.

• For eccentricity not equal to zero the critical Gauss point is (3,21, 2,21, 3,79)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure mechanism Porous analyses with 
deterministic shape functions 
• cR case provides the maximum uncertainty and smallest minimum values of failure stresses 

when the eccentricity is not zero.

• The eccentricity zero gives the largest uncertainty on the failure strains in both compoments

• Smaller eccentricities and large eccentricities with linear distribution of the compressibility 
factor provide volumetric failure while large eccentricities and constant distribution for κ
provide volumetric failure

• Critical Gauss point is (3,21, 2,79, 3,79) in all eccentricities except h/6 (κL cR case)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure mechanism Porous random field analyses
• The correlation length 2 m provides the maximum uncertainty at stresses.

• The correlation length 4 m provides the largest variability at stresses.

• When the eccentricity is not zero mainly the distortional failure occurs.

• When the values for the eccentricity is small the critical integration point is (3,21, 2,79, 3,79) 
and as the eccentricity increases the critical Gauss point becomes (3,21, 2,21, 3,79) 



Conclusions

• Failure load, failure displacements and failure spline and corresponding 
stresses-strains follow the Gaussian distribution despite the excessive 
material non linearity

• The compressibility factor κ plays an significant role especially when it has a 
constant distribution. Similar conclusions apply for the plasticity variable c. 
Permeability has a smaller influence to the uncertainty of the output.

• The amplification of the uncertainty in displacements can be up to 2,6 times 
larger

• The random field processes provide larger mean failure strains
• In general, for small eccentricities the distortional failure occurs and as the 

eccentricity increases if the compressibility factor varies with a constant 
distribution over depth the volumetric failure occurs.

• In the majority of the cases the integration point (3,21 , 2,79 , 3,79) may be 
considered the onset of the Meyerhoff spline.



Thank you all for your attention.
May you stay safe from the pandemic and soon enough to be 

able to conference live .
Questions?


