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Introduction

Porous consolidation of clays. = Equillibrium equations of solid
coupled with equations of fluid flow

For lower frequency excitations =2 u-p formulation which requires
less computational effort

The soil behavior is described with the compressibility factor k, the
critical state line inclination of the soil c and the permeability k. In
this context, Modified Cam Clay models are implemented.



Introduction

* |n the stochastic finite element method there are two ways of
providing the spatial distribution of the input stochastic variables

1. The nodal points are considered as random variables and
deterministic shape functions are used for providing the material
spatial distribution

2. The spectral representation or the Karhunen Loeve sum, can be
applied for providing a random field of the variable under
consideration.



Introduction

* |n this work the material yield model proposed by Kavvadas and
Amorosi is adopted =2 accurate and reliable material model

e Valid quantitative results for predicting the response for porous
consolidation of clays under uncertainty

 The goal is to quantify the uncertainty of the output displacement in
relation to the variability of the input, the spatial distribution of the
material variables and the eccentricity of the footing settlement.



Dynamic soil-pore-fluid interaction-The Biot problem

 Equation of equilibrium for the soil-fluid mixture
S'e — pit —pr(W+ wV'w) + pb = 0

 Equation of balance of the fluid
pr(w+wVw)

—Vp—R—pfil— n +be=0
*  Flow conservation equation
i KT . . n 1-— n npf .
Viw+ |1 ——)Ie+p(—+ ) +——+s5=0
KS Kf KS pf

e Darcylaw = kR =w

e  Stress-Strain material law and pore pressure stress equation
do' = Dde,;,0' =0 +p

. IIgounélzlary conditions of known pressures, displacements, water velocity and stresses in specific parts of the
oundary.



Dynamic soil-pore-fluid interaction-The u-p problem

 Equation of equilibrium for the soil-fluid mixture
STo — pit+pb =0

* Flow conservation equation

vTk(—V it ob) 4 (13 e (o™ ps—0
(=Vp — pru+ psb) ngpl(f K. § =

e Stress-Strain material law and pore pressure stress equation
do' = Dde,;,0' =0 +p

 Boundary conditions of known pressures, displacements, water velocity and stresses in
specific parts of the boundary.

* This formulation is valid in low frequency excitations in relation with the eigenfrequency of
the soil and in static problems.



Dynamic soil-pore-fluid interaction-FEM simulation

e Equation of discretized u-p formulation
Mu+ Cu+ Ku=F

m=[ o= lqz g]’K:[If)l i F=lo]e=1

Where M4, C4, K are the standard mass, damping and stiffness matrices
respectively and Q. , H, S are the coupling, permeability and saturation matrices
respectively and are expressed as

T n 1-—-n

Q. = f BTIN,dV,H = f (VN,) k(VN,)dV,S = f NyNp (Kf+ 7 )dV
S

|4 |4 |4



The material yield stress model

Bond Strength Envelope (BSE)

Czss+(ph—a)2 2=0

Plastic Yield Envelope (PYE)
|
— (s = 51): (s = 51) + (pp — P)? — (@)=

Intrinsic Strength Envelope (ISE)

1
Czss+(ph—a)2 2=0

The PYE is always inside BSE and ISE is the smallest possible BSE



The material yield stress model

Graphical representation of the constitutive model



The Karhunen Loeve Series

e For a random field with zero mean and an autocovariance function

, AX
Ch:O-deb

The solution of the integrodifferential Fredholm problem provide analytical
expressions for the eigenvalues A and sinusoidal expressions for eigenfunctions ©.
Therefore a robust equation of the random field and is expressed as follows

HGx0) = 100 + ) & 01605(w)
1

For M number of eigenfunctions chosen to achieve minimum error and ¢;(w) a
set of standard normal random variables.



The truncated normal distribution

* If the domain of definition of the probability is the [a, b] and we know the
normal distribution moments of the PDF in [—o00, o] (U, 04) then the PDF in [a,
b] is expressed as

0]0:6),
oq(P(B)-D(A))

g1(x) =

Where ¢ and O represent the standard normal probability and cumulative
distribution function respectively. The X, , B, A are the normalized coordinates
for x, a, b respectively. The mean value and standard deviation of g,(x) are
functions of the values (u, ;) and the values of  and ® in A and B



Algorithm for the determination of the failure load in the case of a ramp loading
time function

* Lettheramp load function be
defined. For determining the factor
A* at the time T a recursive relation

IS proposed:
Antn

* A1 =a Fb A,
* The difference between two
adjacent iterations at the infinite

tends to O consequently

convergence is achieved if and only
if0=a+b-1




Algorithm for the determination of the failure load in the case of a ramp loading
time function

Only one initial trial guess
Smaller number of
iterations for convergence
Computational time
reduction in comparison
with the bisection method
in the vicinity of 35%
Relative error less than 1%

Bisection Bisection

Initial value
of failure stress
(KPa)

Initial value

of safety stress
(KPa)
Convergence
Tolerance

Number of trials
for
convergence

Displacement
of failure at
convergence (m)

0.03054  0.03072  0.03054

convergence
(KPa)

Computational
time (mins) 750 833 663

4484.38  4478.52  4484.38

Proposed
Bisection Algorithm
Algorithm Algorithm Algorithm a=1/3 b=2/3 a=1/2 b=1/2

Proposed

a=2/3
b=1/3

Algorithm Algorithm

a=1b=0

0.03078 0.03079 0.03071  0.03072

4555.60 4518.22 4505.94  4477.50

631 584 475 302

Proposed Algorithm Proposed difference e

Absolute

Absolute percenta Absolute Absolute
percentag  ge

percenta percenta
e differenc ge ge
differenc differenc
a=1/2 e a=2/3 e a=1
b=1/2 b=1/3 b=0

a=1/3
b=2/3




Numerical tests on stochastic consolidation with random linear and non
linear material properties-Problem description




Numerical tests on stochastic consolidation with random linear and non

linear material properties-Problem description
 Porous problems and solid problems

e Shallow foundation with linear distributed equivalé
Forces for a combination of N,M and 4 eccentricities
e=0, h/12, h/6, h/3

e 8 node Hexa with linear shape functions for u and

* |Initial stresses =» Geostatic vertical stresses and
horizontal stresses=100 KPa
* Boundary conditions =» u(z=h)=0

 Deterministic calibration parameters, Poisson ratio, plasticity hardening
parameters

100 samples of Monte Carlo simulations considering the Latin Hypercube
Sampling



Numerical tests on stochastic consolidation with random linear and non
linear material properties-Problem description

K C Abbreviation

Constant Constant

Linear Constant

Constant Random

Linear Random

Solid analyses performed.



Numerical tests on stochastic consolidation with random linear and non
linear material properties-Problem description

Constant Deterministic Deterministic P'KC'CD'kD
Linear Deterministic Deterministic P'KL'CD'kD
Constant Deterministic Random P'KC'CD'kR
Linear Deterministic Random P'KL'CD'kR
Constant Random Deterministic P'KC'CR'kD
Linear Random Deterministic P'KL'CR'kD
Constant Random Random P'KC'CR'kR

Linear Random Random P'KL'CR'kR

Random Field,b=2 Random Field,b=2 Random Field,b=2 P'KRF'CRF'kRFz

Random Field,b=4 Random Field,b=4 Random Field,b=4 P'KRF'CRF'kRF4

Random Field,b=8 Random Field,b=8 Random Field,b=8 P'KRF'CRF'kRFS

Porous analyses performed.



Numerical tests on stochastic consolidation with random linear and non
linear material properties-Problem description
* K =2K(z=0)=0,008686 and R = k(z=h)/k(z=0) is random with R,ean = 0,469 and CVy = 0,25

K= k,=0,004074 and CV = 0,25

* czx™> Mean value of friction angle 23° and standard deviation of 2° and ¢ =

c.=> ¢=0,7336 for friction angle of 23°
* Kgr @ Mean value=0,008686, exponential autocorrelation function CV = 0,25, b=75 and 100

* gy "2 Mean value= 0,7336, exponential autocorrelation function CV = 0,25, b=75 and 100

3
* kg = Mean value=10"° 1’; i, exponential autocorrelation function CV = 0,25, b=75 and

100




Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure load and displacements

Solid analyses

Failure displacements (m)

Failure load (Kpa)
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Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure load and displacements

* Whenk, distribution is assumed, larger mean failure displacement, larger
mean failure loads, smaller failure displacement and larger failure loads CV is
obtained in relation with K_ . The largest uncertainty for failure load is about
40% the uncertainty of the input while for the failure displacements is about
the same of the input variability

* Critical spatial distribution for mean value and CV for both output variables
IS K

* Asthe eccentricity increases the mean failure load increases and the mean
settlement rotation decreases

* Justification=» In k, the upper layers of the soil are more compressible
though with less variability so the strains are expected with less variability
and so it is expected the output displacement. When the constant
distribution for the compressibility is assumed more integration points have
the same or similar stiffness thus leading to larger failure loads.



Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure load and displacements

Porous analyses with deterministic shape functions for K, c, k

Failure displacements (m) Failure load (Kpa)
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Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure load and displacements

The CV of failure loads is less dependent by the eccentricity, unlike the
displacements and rotations.

Maximum CV of failure load in porous analyses (kc case) is 44 % smaller than
the input CV and for failure displacements 2,6 times greater than the input
oY

Porous analyses=» Important variability reduction for failure maximum stress
whilst for failure displacements in the case of the constant distribution for
the compressibility factor significant variability increase occurs and the
rotation of the footing has output uncertainty in the vicinity of the input
variability

Justification =» Bulk modulus K}, is a function of mean stress (Poroelasticity).
So K}, , in porous analyses is expected with smaller values and smaller
uncertainrty. Similar conclusions can be made for the failure displacements
since there is no tensile strength of the soil point and consequently there is
smaller surface of the BSE leading to the aforementioned results



Numerical tests on stochastic consolidation with random linear and non

linear material properties-Failure load and displacements
Porous analyses with random field representation for all stochastic material variables

Failure displacements (m) Failure load (Kpa)
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Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure load and displacements

Maximum CV of the output for failure load and displacements is about 36% lower
than the uncertainty of the input while for rotation of the footing is equal to the
variability of the input.

Mean values of failure load and failure displacements slightly deviate from the
corresponding mean values in the analyses with deterministic values for the material
variables. This deviation is up to 17% for the forces and in the vicinity of 20% for the
displacements.

In the case of porous random field analyses the increase of the correlation length for
reduces the CV of the output for stresses and displacements whilst for the rotation of
the settlement at failure the critical correlation length is 4 m.

Justification = The integration point failure may be «from the wet side» (from the
left side of the vertical halfaxis of the ellipse) or «from the dry side» (from the right
side of the vertical halfaxis of the ellipse) consequently a large change of the value of
c may incorporate very large deviation of the stress point of failure leading to the
aforementioned results.



Numerical tests on stochastic consolidation with random linear and non
linear material-Analysis of the results (Kolmogorov Smirnov Test)

* Assumption = The output displacement follows the truncated normal distribution.
 Justification from Histograms =2 Graphically this holds

 Justification from numerical test = Kolmogorov Smirnov test for a sample following a
distribution.

 The largest absolute difference of the theoretical and the numerical CDF is compared to the
critical value. Since it is less than the critical value the null hypothesis holds and the sample
follows the truncated normal distribution. Therefore the null hypothesis at the 5% significance
level is satisfied to the randomly selected analyses presented to the histograms

e Despite the material non linearity the output displacement still has the Gaussian nature of the
randomness



Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure load and displacements

Kolmogorov-Smirnov Test
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Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure mechanism Solid Analyses

The distribution for the critical state line inclination cR provides the larger uncertainty and
the smallest minimum values of failure in both hydrostatic and deviatoric components.

The same distribution maximizes the uncertainty of the strains which are in the order of

maghnitude of 12 %o for the linear distribution for k and 5 %o for the constant distribution for
K

In most cases the deviatoric failure occurs.

For eccentricity not equal to zero the critical Gauss pointis (3,21, 2,21, 3,79)



Numerical tests on stochastic consolidation with random linear and non
linear material properties-Failure mechanism Porous analyses with

deterministic shape functions

* cR case provides the maximum uncertainty and smallest minimum values of failure stresses
when the eccentricity is not zero.

* The eccentricity zero gives the largest uncertainty on the failure strains in both compoments

* Smaller eccentricities and large eccentricities with linear distribution of the compressibility
factor provide volumetric failure while large eccentricities and constant distribution for k
provide volumetric failure

» Critical Gauss pointis (3,21, 2,79, 3,79) in all eccentricities except h/6 (kL cR case)



Numerical tests on stochastic consolidation with random linear and non

linear material properties-Failure mechanism Porous random field analyses
* The correlation length 2 m provides the maximum uncertainty at stresses.

* The correlation length 4 m provides the largest variability at stresses.
 When the eccentricity is not zero mainly the distortional failure occurs.

 When the values for the eccentricity is small the critical integrationfoint is (3,21, 2,79, 3,79)
and as the eccentricity increases the critical Gauss point becomes (3,21, 2,21, 3,79)



Conclusions

Failure load, failure displacements and failure spline and corresponding
stresses-strains follow the Gaussian distribution despite the excessive
material non linearity

The compressibility factor k plays an significant role especially when it has a
constant distribution. Similar conclusions apply for the plasticity variable c.
Permeability has a smaller influence to the uncertainty of the output.

The amplification of the uncertainty in displacements can be up to 2,6 times
larger

The random field processes provide larger mean failure strains

In general, for small eccentricities the distortional failure occurs and as the
eccentricity increases if the compressibility factor varies with a constant
distribution over depth the volumetric failure occurs.

In the majority of the cases the integration point (3,21, 2,79, 3,79) may be
considered the onset of the Meyerhoff spline.



Thank you all for your attention.
May you stay safe from the pandemic and soon enough to be
able to conference live .
Questions?



