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Introduction

• Porous consolidation of clays.  Equillibrium equations of solid 
coupled with equations of fluid flow 

• For lower frequency excitations  u-p formulation which requires 
less computational effort

• The soil behavior is described with the compressibility factor κ, the 
critical state line inclination of the soil c and the permeability k. In 
this context, Modified Cam Clay models are implemented. 



Introduction

• In the stochastic finite element method there are two ways of 
providing the spatial distribution of the input stochastic variables 

1. The nodal points are considered as random variables and 
deterministic shape functions are used for providing the material 
spatial distribution

2. The spectral representation or the Karhunen Loeve sum, can be 
applied for providing a random field of the variable under 
consideration.



Introduction

• In this work the material yield model proposed by Kavvadas and 
Amorosi is adopted  accurate and reliable material model

• Valid quantitative results for predicting the response for porous 
consolidation of clays under uncertainty

• The goal is to quantify the uncertainty of the output displacement in 
relation to the variability of the input, the spatial distribution of the 
material variables and the soil depth



Dynamic soil-pore-fluid interaction-The Biot problem
• Equation of equilibrium for the soil-fluid mixture

𝑺𝑻𝝈 − 𝜌 ሷ𝒖 − 𝜌𝑓 ሶ𝒘 + 𝒘𝛻𝑇𝒘 + 𝜌𝒃 = 𝟎

• Equation of balance of the fluid

−𝛻𝑝 − 𝑹 − 𝜌𝑓 ሷ𝒖 −
𝜌𝑓 ሶ𝒘 + 𝒘𝛻𝑇𝒘

𝑛
+ 𝜌𝑓𝒃 = 𝟎

• Flow conservation equation

𝛻𝑇𝒘+ 1 −
𝐾𝑇
𝐾𝑠

𝑰 ሶ𝜺 + ሶ𝑝(
𝑛

𝐾𝑓
+
1 − 𝑛

𝐾𝑠
) +

𝑛 ሶ𝜌𝑓

𝜌𝑓
+ ሶ𝒔 = 𝟎

• Darcy law  𝒌𝑹 = 𝒘

• Stress-Strain material law and pore pressure stress equation 
𝒅𝝈′ = 𝑫𝒅𝜺𝒆𝒍 , 𝝈

′ = 𝝈 + 𝑝

• Boundary conditions of known pressures, displacements, water velocity and stresses in specific parts of the 
boundary.



Dynamic soil-pore-fluid interaction-The u-p problem
• Equation of equilibrium for the soil-fluid mixture

𝑺𝑻𝝈 − 𝜌 ሷ𝒖 + 𝜌𝒃 = 𝟎

• Flow conservation equation

𝛻𝑇𝒌(−𝛻𝑝 − 𝜌𝑓 ሷ𝒖 + 𝜌𝑓𝒃) + 1 −
𝐾𝑇
𝐾𝑠

𝑰 ሶ𝜺 + ሶ𝑝
𝑛

𝐾𝑓
+
1 − 𝑛

𝐾𝑠
+ ሶ𝒔 = 𝟎

• Stress-Strain material law and pore pressure stress equation 
𝒅𝝈′ = 𝑫𝒅𝜺𝒆𝒍 , 𝝈

′ = 𝝈 + 𝑝

• Boundary conditions of known pressures, displacements, water velocity and stresses in 
specific parts of the boundary.

• This formulation is valid in low frequency excitations in relation with the eigenfrequency of 
the soil and in static problems.



Dynamic soil-pore-fluid interaction-FEM simulation

• Equation of discretized u-p formulation
𝑴 ሷ𝒖 + 𝑪 ሶ𝒖 + 𝑲𝒖 = 𝑭

𝑴 =
𝑴𝟏 𝟎
𝟎 𝟎

, 𝑪 =
𝑪𝟏 𝟎

𝑸𝒄
𝑻 𝑺

, 𝑲 =
𝑲𝟏 −𝑸𝒄

𝟎 𝑯
, 𝑭 =

𝑭𝟏
𝟎

, 𝒖 = [
𝒖
𝒑]

Where 𝑴𝟏, 𝑪𝟏, 𝑲𝟏 are the standard mass, damping and stiffness matrices 
respectively and 𝑸𝒄 , 𝑯, 𝑺 are the coupling, permeability and saturation matrices 
respectively and are expressed as 

𝑸𝒄 = න

𝑉

𝑩𝑻𝑰𝑵𝒑 𝑑𝑉,𝑯 = න

𝑉

𝛁𝑵𝒑
𝑻
𝒌 𝛁𝑵𝒑 𝑑𝑉, 𝑺 = න

𝑉

𝑵𝒑
𝑻𝑵𝑷

𝑛

𝐾𝑓
+
1 − 𝑛

𝐾𝑠
𝑑𝑉



The material yield stress model

• Bond Strength Envelope (BSE) 
1

𝑐2
𝒔: 𝒔 + 𝑝ℎ − 𝑎 2 − 𝑎2 = 0

• Plastic Yield Envelope (PYE) 
1

𝑐2
(𝒔 − 𝒔𝑳): 𝒔 − 𝒔𝑳 + 𝑝ℎ − 𝑝𝐿

2 − (𝜉𝑎)2= 0

• Intrinsic Strength Envelope (ISE)
1

𝑐2
𝒔: 𝒔 + 𝑝ℎ − 𝑎 2 − 𝑎2 = 0

• The PYE is always inside BSE and ISE is the smallest possible BSE



The material yield stress model

Graphical representation of the constitutive model



The Karhunen Loeve Series

• For a random field with zero mean and an autocovariance function

𝐶ℎ = 𝜎𝑑
2𝑒

ΔΧ

𝑏

The solution of the integrodifferential Fredholm problem provide analytical 
expressions for the eigenvalues λ and sinusoidal expressions for eigenfunctions Φ. 
Therefore a robust equation of the random field and is expressed as follows

𝐻 𝒙,𝜔 = 𝜇 𝒙 +෍

1

𝑀

𝜆𝑖Φi 𝐱 ξi(ω)

For M number of eigenfunctions chosen to achieve minimum error and ξi(ω) a 
set of standard normal random variables.



The truncated normal distribution

• If the domain of definition of the probability is the [a, b] and we know the 
normal distribution moments of the PDF in [−∞,∞] (μ, 𝜎𝑑) then the PDF in [a, 
b] is expressed as

𝑔1 𝑥 =
φ Χ0

𝜎𝑑 Φ Β −Φ Α

Where φ and Φ represent the standard normal probability and cumulative 
distribution function respectively. The Χ0 , Β, 𝐴 are the normalized coordinates 
for x, a, b respectively. The mean value and standard deviation of 𝑔1 𝑥 are 
functions of the values (μ, 𝜎𝑑) and the values of φ and Φ in A and B



Algorithm for the determination of the failure load in the case of a ramp loading 
time function 

• Let the ramp load function be 
defined. For determining the factor 
λ* at the time T a recursive relation 
is proposed:

• 𝜆𝑛+1 = 0,5(
𝜆𝑛𝑡𝑛

𝑇
+ 𝜆𝑛)

• The difference between two 
adjacent iterations at the infinite 
tends to 0 consequently 
convergence is achieved.



Algorithm for the determination of the failure load in the case of a ramp loading 
time function 

• Only one initial trial guess
• Smaller number of iterations for 

convergence
• Computational time reduction in 

comparison with the bisection method in 
the vicinity of 35%

• Relative error less than 1%

Bisection                                          
Algorithm

Bisection                                          
Algorithm

Bisection                                          
Algorithm

Proposed                                         
Algorithm

Absolute                             
percentage                                       
difference 

Initial value
of failure stress 

(KPa) 400 400 400 400

Initial value
of safety stress 

(KPa) 20 50 100 -

Convergence 
Tolerance 0,01 0,01 0,01 0,01

Number of trials 
for 

convergence 6 6 6 5

Displacement
of failure at 

convergence (m) 0,18283 0,18294 0,18300 0,18288 0,066

Load
of failure at 

convergence (KPa) 362,797 363,085 363,671 365,687 0,551

Computational 
time (mins) 10388 9138 9406 6938 35,57



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description
• Porous problems and solid problems

• 3 depths h=20,40,50 m and dimensions X=Y=4h
and Uniform vertical load 150 Kpa

• 8 node Hexa with linear shape functions for u and p

• Initial stresses  Geostatic vertical stresses and horizontal stresses=0,85* vertical 
stresses

• Boundary conditions  u(z=h)=0 

• Deterministic calibration parameters, Poisson ratio, plasticity hardening parameters 

• 100 samples of Monte Carlo simulations considering the Latin Hypercube Sampling



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description

Solid analyses performed. 

κ c Abbreviation

Constant Constant S-κC-cC

Linear Constant S-κL-cC

Constant Random S-κC-cR

Linear Random S-κL-cR



Porous analyses performed.

κ c k Abbreviation

Constant Constant Random Field,b=75 P-κC-cC-kRF75

Linear Constant Random Field,b=75 P-κL-cC-kRF75

Constant Constant Random Field,b=100 P-κC-cC-kRF100

Linear Constant Random Field,b=100 P-κL-cC-kRF100

Constant Random Random Field,b=75 P-κC-cR-kRF75

Linear Random Random Field,b=75 P-κL-cR-kRF75

Constant Random Random Field,b=100 P-κC-cR-kRF100

Linear Random Random Field,b=100 P-κL-cR-kRF100

Random Field,b=75 Random Field,b=75 Random Field,b=75 P-κRF-cRF-kRF75

Random Field,b=100 Random Field,b=100 Random Field,b=100 P-κRF-cRF-kRF100

Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Problem description
• κLκ(z=0)=0,008686 and 𝑅 = κ(z=h)/κ(z=0) is random with 𝑅mean = 0,469 and 𝐶𝑉𝑅 = 0,25

• κC κμ =0,004074 and 𝐶𝑉 = 0,25

• cRMean value of friction angle 23° and standard deviation of 2° and 𝑐 =

2

3
6 sin 𝜑

3−𝑠𝑖𝑛(𝜑)

• cC c=0,7336 for friction angle of 23°

• κRF Mean value=0,008686, exponential autocorrelation function 𝐶𝑉 = 0,25, b=75 and 100

•

• cRFMean value= 0,7336, exponential autocorrelation function 𝐶𝑉 = 0,25, b=75 and 100

•

• kRFMean value=10−8
𝑚3𝑠

𝑀𝑔𝑟
, exponential autocorrelation function 𝐶𝑉 = 0,25, b=75 and 

100 



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Failure load (Kpa)

Solid analyses

Failure displacements (m)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

• When κL distribution is assumed, larger mean failure displacement and 
smaller CV is obtained in relation with κc . The largest uncertainty for failure 
load is about half the uncertainty of the input while for the failure 
displacements is about the same of the input variability

• Critical spatial distribution for mean value and CV for both output variables 
is κC 

• Justification In κL the upper layers of the soil are more compressible 
though with less variability so the strains are expected with less variability 
and so it is expected the output displacement. When the constant 
distribution for the compressibility is assumed more integration points have 
the same or similar stiffness thus leading to larger failure loads. 



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Porous analyses with deterministic shape functions for κ and c

Failure displacements (m) Failure load (Kpa)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements
• The CV of failure loads is less dependent from the change of the depth than the 

corresponding failure displacements.
• For the same depth and material assumption in porous analyses larger output 

variability in both monitored variables compared to the solid analyses
• Maximum CV of failure load in porous analyses (κc case) is 47 % smaller than the 

input CV and for failure displacements 26 % greater than the input CV, whilst for 
linear distribution for κ the CV of the output is negligible in all cases.

• Porous analyses Important variability reduction for failure load while for failure 
displacements in the case of the constant distribution for the compressibility factor 
significant variability increase occurs.

• Justification  Bulk modulus 𝐾𝑏 is a function of mean stress (Poroelasticity). So 𝐾𝑏 , 
in porous analyses is expected with smaller values and smaller uncertainrty. Similar 
conclusions can be made for the failure displacements since there is no tensile 
strength of the soil point and consequently there is smaller surface of the BSE leading 
to the aforementioned results



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Porous analyses with random field representation for all stochastic material variables

Failure displacements (m) Failure load (Kpa)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements
• Maximum CV of the output for failure load is 3,5 times larger than the uncertainty of 

the input while for failure displacements is 2,2 higher than the variability of the input.
• Mean values of failure load are significantly smaller than the porous analyses with 

deterministic shape functions for κ and c while for failure displacements when the 
constant distribution for κ is assumed larger mean values are expected in comparison 
with the porous analyses with deterministic shape functions for κ and c 

• In the case of porous random field analyses the increase of the correlation length for
20 and 40 m reduces the CV of the output whilst for 50 m this reverses. The exact 
opposite phenomenon occurs for the mean values.

• Justification  The integration point failure may be «from the wet side» (from the 
left side of the vertical halfaxis of the ellipse) or «from the dry side» (from the right 
side of the vertical halfaxis of the ellipse) consequently a large change of the value of 
c may incorporate very large deviation of the stress point of failure leading to the 
aforementioned results.



Numerical tests on stochastic consolidation with random linear and non 
linear material-Analysis of the results (Kolmogorov Smirnov Test)

• Assumption  The output displacement follows the truncated normal distribution.

• Justification from Histograms  Graphically this holds

• Justification from numerical test  Kolmogorov Smirnov test for a sample following a 
distribution. 

• The largest absolute difference of the theoretical and the numerical CDF is compared to the 
critical value. Since it is less than the critical value the null hypothesis holds and the sample 
follows the truncated normal distribution. Therefore the null hypothesis at the 5% significance 
level is satisfied to the randomly selected analyses presented to the histograms

• Despite the material non linearity the output displacement still has the Gaussian nature of the 
randomness



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure load and displacements

Largest 
Absolute 
Difference

Figure 
(a)

Figure (b) Figure (c) Critical

Significance 
level 5%

0,0752 0,0821 0,1023 0,13851

Kolmogorov-Smirnov Test



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure mechanism Solid analyses
• The distribution for the critical state line inclination cR provides the larger uncertainty and 

the smallest minimum values of failure in both hydrostatic and deviatoric components.

• The same distribution maximizes the uncertainty of the strains which are in the order of 
magnitude of 3-4 ‰ 

• In most cases the deviatoric failure occurs.

• In the majority of the cases critical Gauss point is (2,11, 2,11, 12,11)



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure mechanism Porous analyses with 
deterministic shape functions for the material variables
• cR case provides the maximum uncertainty and smallest minimum values of failure stresses 

in both stress components in 40 and 50 m while for 20 m the deterministic assumption for c 
provides the largest uncertainty of the output.

• The correlation length of the permeability influences notably the uncertainty of the output 
in stresses and strains only in 20 meters depth.

• κc-cR combination gives mostly volumetric failure and κL-cD gives mostly deviatoric failure

• Critical Gauss points are (2,11 , 2,11 , 12,11) for 20 meters, (2,11 , 2,11 , 32,11) for 40 
meters and (2,11 , 2,11 , 2,11) for 50 meters and linear distribution for κ while (2,11 , 2,11 , 
42,11) is the critical point for 50 meters and constant distribution for κ



Numerical tests on stochastic consolidation with random linear and non 
linear material properties-Failure mechanism Porous Random Field analyses
• In general, correlation length 75 m provides the maximum uncertainty at stresses.

• For the strains the critical correlation length for the volumetric component is 75 m while for 
deviatoric part is 100 m

• In 20 and 50 m volumetric failure is critical while for 40 m deviatoric failure is critical

• For 20 m depth and 75 m correlation length the point (2,11 , 2,11 , 2,11) is the critical whilst 
for 100 m correlation length is the (2,11 , 2,11 , 12,11). For 50 m and all correlation length 
the critical integration point is (2,11 , 2,11 , 32,11). Finally, in depth 40 meters many equally 
probable points may be the onset of the Meyerhoff spline.



Conclusions

• Failure load, failure displacements and failure spline and corresponding 
stresses-strains follow the Gaussian distribution despite the excessive 
material non linearity

• The compressibility factor κ plays the most important role especially when it 
has a Karhunen Loève distribution. Same applies for the plasticity variable c. 
Permeability influences to a lesser extent the uncertainty of the output.

• The amplification of the uncertainty varies from 30% to 3,5 times. 
• The random field processes maximize the variability of the output to 

stresses and strains at failure.
• For random field processes at 20 and 50 meters the volumetric failure is 

critical while for 40 meters the deviatoric failure is critical.
• In the majority of the cases the integration point (2,11 , 2,11 , 12,11) may be 

considered the onset of the failure spline.



Thank you all for your attention.
May you stay safe from the pandemic and soon enough to be 

able to conference live .
Questions?


