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» Carbon nanomaterials exhibit remarkable mechanical, electrical and
thermal properties.

> They constitute ideal fillers for high-performance composites.

> In structural applications, concrete reinforced with carbon nanomaterials,
exhibits several desirable properties such as:

> High increase in strength B i #g;;g»;;;
> Crack prevention L g SRR
> Lightweight reinforcement { j‘ir‘: = EEIEEE3"
> Extremely high-impact strength i

Carbon nanotube (CNT) Graphene

> Increased fatigue and corrosion resistance
» Improvement in structural performance, safer structures
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J Concrete reinforced with CNTs exhibits a highly complex behavior.

J This behavior is the result of different physical mechanisms, existing at
various length scales.

J A phenomenological constitutive law that takes into account all the
interactions between the constituents is difficult to derive.

J We propose a hierarchical modeling approach.
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Idea: Decompose the material analysis into multiple scales to account for
the different phenomena

3 113 o " E—
1.0 Hm 403 mm3 1003 mm?3
Nanoscale Microscale Mesoscale
Cement paste + CNTs CNT reinforced Reinforced

cement paste + small concrete+ large
aggregates aggregates
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Modeling of a single CNT

T ——
e B D e e N R AR LT e e
Y Y e P AR RA R RS e L e S S 4 » ) -
PR TANANN AN R R AR LR OIS S AR SRR R PN ot Rt
R S ‘)\.»L‘\lt_l"’.-_» - ‘-\“4.\',"'\'. ;.
RSN SRTR S22 C SRR RS FLRLINEIS

~- =5

Carbon atom C-C bonds modeled CNT simulated as a space frame structure
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Modeling of nanoscale RVE PN
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» Use the embedding FE technique | / \\'7 > /

K,ano = Kcement + Kfibers

» Assume a Drucker-Prageryield criterion
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Modeling of microscale RVE

» Embed the small aggregates on a matrix
composed of the reinforced cement paste

Kicro = Knano + Kaggregates

Modeling of mesoscale RVE

» Embed the larger aggregates on a matrix
composed of the reinforced composite

Kmesn = Kmif:ro + Kaggregates

National Technical
University of Athens
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Multiscale modeling

Pass information from lower to upper scales

* Apply BC on RVE according to € (localization):

* Discretize and solve RVE

 Return @ and C (homogenization):

1 _
o=——7| odx, C = 0:0
V]| L ¢
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Use the FE? multiscale analysis to analyze structures comprised of composite
concrete

LOCALIZATIO
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nanoscale microscale mesoscale macroscale
mlCTOl mlCTO mesor meso Jm{lﬁrﬂi macro

HOMOGENIZATION
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NN, .5, =2 becomes our new concrete material
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Offline (training) procedure: Starting from the nanoscale
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Bnanaz model input parameters at nanoscale: o 27O ®
CNT wf% & i T\
CNT length, diameter, orientation | /
cement paste modulus of elasticity,
etc.

Omicros Cmicm
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Offline (training) procedure: Starting from the nanoscale
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Bmicroz model input parameters at microscale:
aggregates vf%
aggregates size
aggregates modulus of elasticity,
etc.
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Offline (training) procedure: Starting from the nanoscale
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0., 050= model input parameters at mesoscale:
aggregates vi%
aggregates size
aggregates modulus of elasticity,
etc.

Omacro: Cmacro
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Computational Gain

> One analysis of the macroscale problem without the surrogate requires:

(#Gauss points at macroscale) x (mesoscale RVE analyses) x
(#Gauss points at mesoscale RVE) x (microscale RVE analyses) x
(#Gauss points at mesoscale RVE) x (nanoscale RVE analyses)

Vs

> One analysis of the macroscale problem using the surrogate requires:

(#Gauss points at macroscale) x (mesoscale Neural Network evaluations)

Drastic cost reduction => Allows us to perform repeated model evaluations

/ l ~~__ Sensitivity

Uncertainty quantification Optimization analysis



1O"CRAC NV e ke

International Congress on Computational Mechanics i ' T etond v

University of Athens

P Problem setting
\a
E _______
§ Deterministic parameters: Stochastic parameters: FEM discretization:
E - 20 G a :'.T 2 RASARAREAARRAREERARERAN
Cement . 10 p HMN(O’ (_) ) ;:nxn!unnnurzuununnnumunmu;;
g Wfenrs = 1% 5 .
~ vfaggregates,micro = 40%
vfaggregates,meso = 40% H
§ P =100 kN
S
Design variables: CNT orientation {6, ..., 055} + T
£ H252 plane stress [
S at each quad element T :
~ ' quad elements

0.30m 3.40m 0.30m Stochastic Optimization Problem:

argming, . g,.,}ef02m) ELIUI] + Std[l|U]l]
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Results

Stochastic Optimization Problem:
argming. g, efo2m) ELIUI] + Std[||U]|]

N
il

Genetic Algorithm: population size 1000
50 generations

crossover fraction 0.6
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100 Monte Carlo Simulations for each candidate solution
> A total of 5°10° deterministic analyses
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JA multiscale model has been proposed for CNT-reinforced concrete.

It is capable of taking into account all physical mechanisms, arising at
different scales of the problem.

JdThe immense computational requirements of this complex model have
been effectively tackled using artificial neural networks.

Thank you for your attention



