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Overview

• Multiscale model composition

• Polymer/CNT interface formulation

• Bayesian update of the interfacial properties

• Neural network-based surrogate of the RVE

• Applications / Conclusions



Multiscale model composition

PEEK polymer/ single walled CNTs armchair (8,8)

• Atomic representation of CNTs

• Connection to the nano-scale 

- RVE configuration

• Connection to the macro-scale

- FE2 algorithm

Micro-scale

Macro-scale

Atomic scale



Multiscale model composition

Atomic representation of CNTs

• Carbon atom C-C bonds modeled as beams (mMSM*)

• CNT simulated as a space frame structure

+ Accurate description

- Computational demanding

*W.-H. Chen, H.-C. Cheng, Y.-L. Liu, Radial mechanical properties of single-walled carbon nanotubes using modified
molecular structure mechanics



Multiscale model composition

Connection to the micro-scale

• Each space frame is projected to an Equivalent Beam Element (EBE*)

*D.N. Savvas , V. Papadopoulos, M. Papadrakakis , The effect of interfacial shear strength on damping behavior of 

carbon nanotube reinforced composites



Multiscale model composition

RVE configuration

1. Determine RVE dimensions

2. Add CNTs to achieve a volume fraction

3. Formulate an interaction mechanism



Multiscale model composition

Connection to the macro-scale

• Apply BC on RVE according to തε (localization):

• Discretize and solve RVE

• Return ത𝜎 and ҧ𝐶 (homogenization):

*C. Miehe, A. Koch, Computational micro-to-macro transitions of discretized microstructures undergoing small strains



Multiscale model composition

FE2 algorithm*

+   Ideal for simulating 

nonlinear phenomena

- Very expensive 

computationally

*F.Feyel , A multilevel finite element method (FE2) to describe 

the response of highly non-linear structures using generalized 
continua



Polymer/CNT interface formulation

Cohesive zone model

Relates the DOFs of the EBE with the Cohesive Beam Element (CBE)



Polymer/CNT interface formulation

Embedding technique

CBE DOFs are described in terms of 
the surrounding matrix element’s 
DOFs with an embedding technique  



Polymer/CNT interface formulation

Interfacial constitutive law

• Α bilinear bond-slip approach is 
selected for the slip component 
of the interface:

 interfacial shear strength

 elastic slope

 plastic slope



Bayesian update of the interfacial properties

Bayes Theorem:

 Prior distribution (Prior beliefs on the probabilistic model)

 Likelihood function (Relation of observations with outcomes of the model)

 Posterior distribution (Updated probabilistic model)



Bayesian update of the interfacial properties

Likelihood function has the form:

 interfacial parameters 

 measurements of deformations

 FE2 model predictions for given θ

 deviation due to measurement and model errors



Bayesian update of the interfacial properties

To efficiently draw samples from
the posterior distribution the
Markov Chain Monte Carlo
(MCMC) technique is employed
with the form of the Metropolis
Hastings (MH) algorithm.

The evaluation of the likelihood
requires a FE2 solution for each
candidate sample .



Neural network-based surrogate of the RVE

The intention is to learn the nonlinear 
equation of the RVE’s homogenization 
scheme.

A Feed Forward Neural Network (FFNN) is 
deployed.

Input neurons consist of     and തε while 
output neurons of ത𝜎 .

Appropriate selection of the ranges from 
which the sampling will occur.



Neural network-based surrogate of the RVE

Procedure by steps:

1. Generate N random input samples within some specified ranges

2. Solve the nonlinear equation of the RVE for each input vector and get the respective  
output

3. Choose the FFNN architecture and train it using the N pairs of input – output.

4. Calculate using the chain rule , where is the  kth
hidden layer (Automatic Differentiation).



Neural network-based surrogate of the RVE

Offline procedure 



Neural network-based surrogate of the RVE

Online procedure



Applications

First example (2D)

A fixed composite panel made of PEEK/SWCNT is subjected to a bending test.

E=4GPa , ν=0.4

44 quadrilateral plane stress FE

P=100kN   uA=4.2cm



Applications

2D RVE representation

RVE dimensions 100x100x20

volume fraction 3%

CNT length L0=50nm 

EAeq=694.77nN , EIeq=100.18nN , GJeq=68.77GPA nm/rad

100 quadrilateral plane stress FE

Prior distributions

Del  - N(10,2) (GPa/nm)

Dpl - N(1,0.2) (GPa/nm)

τ1,y  - N(0.1,0.02) (GPa)



Applications

Progression of the 
FFNN training process

Input sample ranges 
for the FFNN training

3 hidden layers

20 neurons per layer

Levenberg-Marquardt algorithm

3000 samples for FFNN train



Applications

Bayesian update was performed on both full-scale and surrogate model.

Computational time of each stage of the algorithm



Applications

Bayesian update was performed on both full-scale and surrogate model.

22500 likelihood evaluations

15000 accepted samples

65% acceptance ratio

Posterior distributions for both solutions



Applications

Second example (3D) 

A composite wrench fixed on the blue area while subjected to a pressure load on the 
purple area is studied. 

50000 tetrahedral FE

L1= 150kPa   , L2=300kPa

Gaussian kernel



Applications

3D RVE representation

RVE dimensions 100x100x100

volume fraction 4.5%

CNT length L0=50nm 

EAeq=694.77nN , EIeq=100.18nN , GJeq=68.77GPA nm/rad

1000 hexagonal FE

Prior distributions

Del  - N(10,2) (GPa/nm)

Dpl - N(1,0.2) (GPa/nm)

τ1,y  - N(0.1,0.02) (GPa)



Applications

Progression of the 
FFNN training process

Input sample ranges 
for the FFNN training

Error measurement with L2 norm
3 hidden layers

20 neurons per layer

Levenberg-Marquardt 
algorithm

3000 samples for FFNN 
train



Applications

Bayesian update was performed only on the surrogate model.

Computational time of each stage of the algorithm



Applications

Bayesian update was performed only on the surrogate model.

25000 likelihood evaluations

15000 accepted samples

60% acceptance ratio

Posterior distributions for both solutions



Conclusions

• A methodology for updating the beliefs of microscale properties, which are 
expensive and hard to be directly measured, has been developed.

• The surrogate model displayed a high level of accuracy compared to the full-
scale solution, as well as a remarkable cost reduction.

• This framework is generic and can be extended to other physically analogous 
phenomena.
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